Solveeit Logo

Question

Question: The smallest and the largest values of \({\tan ^{ - 1}}\left[ {\dfrac{{\left( {1 - x} \right)}}{{\le...

The smallest and the largest values of tan1[(1x)(1+x)]{\tan ^{ - 1}}\left[ {\dfrac{{\left( {1 - x} \right)}}{{\left( {1 + x} \right)}}} \right], 0x10 \leqslant x \leqslant 1 are
A.0,π0,\pi
B.0,π40,\dfrac{\pi }{4}
C.π4,π4 - \dfrac{\pi }{4},\dfrac{\pi }{4}
D.π4,π2\dfrac{\pi }{4},\dfrac{\pi }{2}

Explanation

Solution

Hint : In the question, we are given the inverse function of tangent\tan gent and we have to find the smallest and largest values of it. We will consider the given expression as a function. We will substitute x=tanθx = \tan \theta and try to convert the function into the form of identity and simplify it. Then, we will substitute the value of the range given in the question to find the smallest and largest values of the given expression.
Formula used
tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
tan1(tanA)=A{\tan ^{ - 1}}\left( {\tan A} \right) = A

Complete step-by-step answer :
We have, tan1[(1x)(1+x)]{\tan ^{ - 1}}\left[ {\dfrac{{\left( {1 - x} \right)}}{{\left( {1 + x} \right)}}} \right]
Let f(x)=tan1(1x1+x)f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)
Let us substitute x=tanθx = \tan \theta in the above written function
f(x)=tan1(1tanθ1+tanθ)\Rightarrow f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}} \right)
As we know tanπ4=1\tan \dfrac{\pi }{4} = 1. So now we will replace 11 by tanπ4\tan \dfrac{\pi }{4}.
f(x)=tan1(tanπ4tanθtanπ4+tanθ)\Rightarrow f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{\tan \dfrac{\pi }{4} + \tan \theta }}} \right)
It can also be written as
f(x)=tan1(tanπ4tanθtanπ4+tanπ4.tanθ)\Rightarrow f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} - \tan \theta }}{{\tan \dfrac{\pi }{4} + \tan \dfrac{\pi }{4}.\tan \theta }}} \right). Because tanπ4=1\tan \dfrac{\pi }{4} = 1.
Now, we can see that above written function is in the form of an identity tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
Here, tanA=tanπ4\tan A = \tan \dfrac{\pi }{4} and tanB=tanθ\tan B = \tan \theta . Let us simplify the function using this identity.
f(x)=tan1(tan(π4θ))\Rightarrow f\left( x \right) = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \theta } \right)} \right)
As we know tan1(tanA)=A{\tan ^{ - 1}}\left( {\tan A} \right) = A, we get
f(x)=π4θ\Rightarrow f\left( x \right) = \dfrac{\pi }{4} - \theta
If x=tanθx = \tan \theta , then θ=tan1x\theta = {\tan ^{ - 1}}x.
f(x)=π4tan1x\Rightarrow f\left( x \right) = \dfrac{\pi }{4} - {\tan ^{ - 1}}x
In the range we have, 0x10 \leqslant x \leqslant 1.
Now, let us find out the minimum value by substituting 11 in the function
As we know
f(1)=π4tan1(1)\Rightarrow f\left( 1 \right) = \dfrac{\pi }{4} - {\tan ^{ - 1}}\left( 1 \right)
As we know tanπ4=1\tan \dfrac{\pi }{4} = 1 . Then,
f(1)=π4tan1(tanπ4)\Rightarrow f\left( 1 \right) = \dfrac{\pi }{4} - {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right)
As we know tan1(tanA)=A{\tan ^{ - 1}}\left( {\tan A} \right) = A. Therefore, we get
f(1)=π4π4\Rightarrow f\left( 1 \right) = \dfrac{\pi }{4} - \dfrac{\pi }{4}
f(1)=0\Rightarrow f\left( 1 \right) = 0
This is the minimum value.
Now, let us find out the maximum value by substituting 00 in the function
f(0)=π4tan1(0)\Rightarrow f\left( 0 \right) = \dfrac{\pi }{4} - {\tan ^{ - 1}}\left( 0 \right)
f(0)=π4tan1(tan0)\Rightarrow f\left( 0 \right) = \dfrac{\pi }{4} - {\tan ^{ - 1}}\left( {\tan {0^\circ }} \right)
As we know, the value of tangent\tan gent is zero at 00^\circ .
f(0)=π40\Rightarrow f\left( 0 \right) = \dfrac{\pi }{4} - 0
f(0)=π4\Rightarrow f\left( 0 \right) = \dfrac{\pi }{4}
This is the maximum value.
Therefore, the smallest and largest values are 0,π40,\dfrac{\pi }{4}.
So, the correct answer is “Option B”.

Note : Whenever we come across such problems, we try to replace xx, to make the function in the form an identity and simplify it. The given expression is in tangent function, make sure that it says in tan function only, do not simplify it as sin and cosine. Remember that range determines the smallest and largest values of any function.