Solveeit Logo

Question

Question: The smallest and the largest values of \(\tan ^ { - 1 } \left( \frac { 1 - x } { 1 + x } \right) , ...

The smallest and the largest values of

tan1(1x1+x),0x1\tan ^ { - 1 } \left( \frac { 1 - x } { 1 + x } \right) , 0 \leq x \leq 1are.

A

0,π0 , \pi

B

0,π40 , \frac { \pi } { 4 }

C

π4,π4- \frac { \pi } { 4 } , \frac { \pi } { 4 }

D

π4,π2\frac { \pi } { 4 } , \frac { \pi } { 2 }

Answer

0,π40 , \frac { \pi } { 4 }

Explanation

Solution

We have,

tan1(1x1+x)=tan11tan1x=π4tan1x\tan ^ { - 1 } \left( \frac { 1 - x } { 1 + x } \right) = \tan ^ { - 1 } 1 - \tan ^ { - 1 } x = \frac { \pi } { 4 } - \tan ^ { - 1 } x

Since 0x10tan1xπ40 \leq x \leq 1 \Rightarrow 0 \leq \tan ^ { - 1 } x \leq \frac { \pi } { 4 }

π4tan1(1x1+x)0\Rightarrow \frac { \pi } { 4 } \geq \tan ^ { - 1 } \left( \frac { 1 - x } { 1 + x } \right) \geq 0.