Solveeit Logo

Question

Mathematics Question on Application of derivatives

The slopes of the tangent and normal at (0,1)(0, 1) for the curve y=sinx+exy = \sin x + e^x are respectively

A

11 and 1-1

B

12- \frac{1}{2} and 22

C

22 and 12- \frac{1}{2}

D

1-1 and 11^-

Answer

22 and 12- \frac{1}{2}

Explanation

Solution

We have, y=sinx+exy = \sin x + e^x
Differentiating w.r.t. x, we get
dydx=cosx+ex\frac{dy}{dx} = \cos x +e^{x}
dydx(0,1)=cos(0)+e0=1+1=2\left|\frac{dy}{dx}\right|_{\left(0,1\right)} = \cos\left(0\right)+e^{0} =1+1=2
dxdy=1cosx+ex- \frac{dx}{dy} = -\frac{1}{\cos x +e^{x}}
dxdy(0,1)=1cos0+e0=12\left|-\frac{dx}{dy}\right|_{\left(0,1\right)} = -\frac{1}{\cos 0+e^{0} } = - \frac{1}{2}
Hence, slope of tangent and normal at (0, 1) are 2 and 12 - \frac{1}{2} respectively.