Solveeit Logo

Question

Mathematics Question on Straight lines

The slopes of the focal chords of the parabola y2=32xy^{2}=32 x, which are tangents to the circle x2+y2=4x^{2}+y^{2}=4, are

A

12,12\frac{1}{2}, \frac{-1}{2}

B

13,13\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}

C

115,115\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}

D

25,25\frac{2}{\sqrt{5}}, \frac{-2}{\sqrt{5}}

Answer

115,115\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}

Explanation

Solution

Given equation of circle is x2+y2=(2)2x^{2}+y^{2}=(2)^{2} \therefore The equation of tangent to the circle is y=mx±21+m2(y=mx±r1+m2)y=m x \pm 2 \sqrt{1+m^{2}}\left(\because y=m x \pm r \sqrt{1+m^{2}}\right) Also, equation of parabola is y2=32xy^{2}=32 x \therefore Focus of parabola is (8,0)(8,0) Since, the line passes through focus (8,0)(8,0). 0=8m±21+m2\therefore 0=8 m \pm 2 \sqrt{1+m^{2}} 4m=±1+m2\Rightarrow -4 m=\pm \sqrt{1+m^{2}} 16m2=1+m2\Rightarrow 16 m^{2}=1+m^{2} 15m2=1\Rightarrow 15 m^{2}=1 m2=115\Rightarrow m^{2}=\frac{1}{15} m=±115\Rightarrow m=\pm \frac{1}{\sqrt{15}}