Question
Question: The slopes of the common tangents to the hyperbola \(\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1\) and \(...
The slopes of the common tangents to the hyperbola 9x2−16y2=1 and 9y2−16x2=1 are
A
– 2, 2
B
– 1, 1
C
1, 2
D
2, 1
Answer
– 1, 1
Explanation
Solution
Given hyperbola are 9x2−16y2=1 .....(i)
and 9y2−16x2=1 .....(ii)
Any tangent to (i) having slope m is y=mx±9m2−16 .....(iii)
Putting in (ii), we get, 16[mx±9m2−16]2−9x2=144⇒
(16m2−9)x2±32m(9m2−16)x+144m2−256−144=0⇒ (16m2−9)x2±32m(9m2−16)x+(144m2−400)=0.....(iv)
If (iii) is a tangent to (ii), then the roots of (iv) are real and equal.
∴Discriminant = 0; 32×32m2(9m2−16) =
4(16m2−9)(144m2−400) = 64(16m2−9)(9m2−25)
⇒16m2(9m2−16)=(16m2−9)(9m2−25)
⇒ 144m4−256m2=144m4−481m2+225
⇒ 225m2=225⇒ m2=1 ⇒ m=±1