Solveeit Logo

Question

Question: The slopes of the common tangents to the hyperbola \(\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1\) and \(...

The slopes of the common tangents to the hyperbola x29y216=1\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1 and y29x216=1\frac{y^{2}}{9} - \frac{x^{2}}{16} = 1 are

A

– 2, 2

B

– 1, 1

C

1, 2

D

2, 1

Answer

– 1, 1

Explanation

Solution

Given hyperbola are x29y216=1\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1 .....(i)

and y29x216=1\frac{y^{2}}{9} - \frac{x^{2}}{16} = 1 .....(ii)

Any tangent to (i) having slope m is y=mx±9m216y = mx \pm \sqrt{9m^{2} - 16} .....(iii)

Putting in (ii), we get, 16[mx±9m216]29x2=14416\lbrack mx \pm \sqrt{9m^{2} - 16}\rbrack^{2} - 9x^{2} = 144

(16m29)x2±32m(9m216)x+144m2256144=0(16m^{2} - 9)x^{2} \pm 32m(\sqrt{9m^{2} - 16})x + 144m^{2} - 256 - 144 = 0(16m29)x2±32m(9m216)x+(144m2400)=0(16m^{2} - 9)x^{2} \pm 32m(\sqrt{9m^{2} - 16})x + (144m^{2} - 400) = 0.....(iv)

If (iii) is a tangent to (ii), then the roots of (iv) are real and equal.

\thereforeDiscriminant = 0; 32×32m2(9m216)32 \times 32m^{2}(9m^{2} - 16) =

4(16m29)(144m2400)4(16m^{2} - 9)(144m^{2} - 400) = 64(16m29)(9m225)64(16m^{2} - 9)(9m^{2} - 25)

16m2(9m216)=(16m29)(9m225)16m^{2}(9m^{2} - 16) = (16m^{2} - 9)(9m^{2} - 25)

144m4256m2=144m4481m2+225144m^{4} - 256m^{2} = 144m^{4} - 481m^{2} + 225

225m2=225225m^{2} = 225m2=1m^{2} = 1m=±1m = \pm 1