Solveeit Logo

Question

Question: The slopes of common tangents to the hyperbolas \(\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1\) and \(\f...

The slopes of common tangents to the hyperbolas

x29y216=1\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1 and y29x216=1\frac{y^{2}}{9} - \frac{x^{2}}{16} = 1 are:

A

± 2

B

± 1

C

±2\sqrt{2}

D

None of these

Answer

± 1

Explanation

Solution

Given two hyperbolas are

x29y216=1\frac{x^{2}}{9} - \frac{y^{2}}{16} = 1 ... (i)

and y29x216=1\frac{y^{2}}{9} - \frac{x^{2}}{16} = 1 ... (ii)

Equation of tangent on equation (i)having slope m is

y = mx ± 9m216\sqrt{9m^{2} - 16} ... (iii)

Eliminating y between equation (ii) and (iii) we get 16

(mx ± 9m216)2\sqrt{9m^{2} - 16})^{2} - 9x2 = 144.

⇒ (16m2 - 9)x2 ± 32m 9m216\sqrt{9m^{2} - 16}x + (144m2 - 400) = 0 ... (iv)

For it to be tangent D = 0.

∴ (32m 9m216)2\sqrt{9m^{2} - 16})^{2} = 4 (16m2 - 9) (144m2 - 400)

⇒ m2 = 1 ⇒ m = ± 1.