Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The slope of the tangent to the curve x=t2+3t8,y=2t22t5 { x = t^2 + 3t -8 , y = 2t^2 - 2t - 5} at the point (2,1)(2, -1) is

A

227\frac{22}{7}

B

67\frac{6}{7}

C

76\frac{7}{6}

D

67\frac{-6}{7}

Answer

67\frac{6}{7}

Explanation

Solution

We have, x=t2+3t8x=t^{2}+3 t-8 and y=2t22t5y=2 t^{2}-2 t-5 Put x=2x=2 2=t2+3t8\therefore 2=t^{2}+3 t-8 t2+3t10=0\Rightarrow t^{2}+3 t-10=0 (t+5)(t2)=0\Rightarrow (t+5)(t-2)=0 t=5,2\therefore t=-5,2 Now, put y=1y=-1 1=2t22t5\therefore -1=2 t^{2}-2 t-5 2t22t4=0\Rightarrow 2 t^{2}-2 t-4=0 t2t2=0\Rightarrow t^{2}-t-2=0 (t2)(t+1)=0\Rightarrow(t-2)(t+1)=0 t=2,1\Rightarrow t=2,-1 t=2[t1]\therefore t=2 \,\,[\because t \neq-1] Now, dxdt=2t+3\frac{d x}{d t}=2 t+3 and dydt=4t2\frac{d y}{d t}=4 t-2 dydx=dy/dtdx/dt\therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t} =4t22t+3=\frac{4 t-2}{2 t+3} (dydx)t=2=4(2)22(2)+3 \therefore \left(\frac{d y}{d x}\right)_{t=2}=\frac{4(2)-2}{2(2)+3} =824+3=67=\frac{8-2}{4+3}=\frac{6}{7} Hence, the slope of tangent is 67\frac{6}{7}.