Solveeit Logo

Question

Mathematics Question on Straight lines

The slope of the tangent to a curve C : y=y(x) at any point [x, y) on it is 2e2x6ex+92+9e2x\frac{2 e ^{2 x }-6 e ^{- x }+9}{2+9 e ^{-2 x }} If C passes through the points (0,12+π22)\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) and \left(\alpha, \frac{1}{2} e ^{2 \alpha}\right)$$ then e ^\alpha$ is equal to :

A

3+232\frac{3+\sqrt{2}}{3-\sqrt{2}}

B

32(3+232)\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right)

C

12(2+121)\frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)

D

2+121\frac{\sqrt{2}+1}{\sqrt{2}-1}

Answer

32(3+232)\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right)

Explanation

Solution

The correct option is(B): 32(3+232)\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right).