Solveeit Logo

Question

Mathematics Question on Differential equations

The slope of the tangent to a curve C : y = y(x) at any point (x , y) on it is 2e2x6ex+92+9e2x\frac{2e^{2x}-6e^{-x}+9}{2+9e^{-2x}}.If C passes through the points (0,12\frac{1}{2}+π22\frac{\pi}{2\sqrt2}) and (α,12e2α\frac{1}{2e^{2\alpha}}), then e α is equal to

A

3+232\frac{3+√2}{3-√2}

B

32\frac{3}{\sqrt2}(3+232\frac{3+√2}{3-√2})

C

12\frac{1}{\sqrt2}(2+121\frac{\sqrt2+1}{\sqrt2-1})

D

(2+121\frac{\sqrt2+1}{\sqrt2-1})

Answer

32\frac{3}{\sqrt2}(3+232\frac{3+√2}{3-√2})

Explanation

Solution

dydx\frac{dy}{dx}=2e2x6ex+92+9e2x\frac{2e^{2x}-6e^{-x}+9}{2+9e^{-2x}}=e2x6ex2+9e2x\frac{e^{2x}-6e^{-x}}{2+9e^{-2x}}
It is given that the curve passes through
(0,12\frac{1}{2}+π22\frac{\pi}{2\sqrt2})
12\frac{1}{2}+π22\frac{\pi}{2\sqrt2}=12\frac{1}{2}+2\sqrt2tan−1⁡(32\frac{3}{\sqrt2})+C
⇒ C=π22\frac{\pi}{2\sqrt2}−2tan−1⁡(32\frac{3}{\sqrt2})
Now if
(α,12\frac{1}{2}+π22\frac{\pi}{2\sqrt2})
satisfies the curve, then
tan−1⁡(32\frac{3}{\sqrt2})−tan−1⁡(3e6α2\frac{3e6^{−α}}{\sqrt2})=π22\frac{\pi}{2\sqrt2}×12\frac{1}{\sqrt2}=π4\frac{\pi}{4}
eα=92+32321e^\alpha=\frac{\frac{9}{2}+\frac{3}{\sqrt2}}{\frac{3}{\sqrt2}-1}=32(3+232)\frac{3}{\sqrt2}(\frac{3+\sqrt2}{3-\sqrt2})