Solveeit Logo

Question

Question: The slope of the tangent at (x,y) to a curve passing through a point (2,1) is \(\frac{x^{2} + y^{2}}...

The slope of the tangent at (x,y) to a curve passing through a point (2,1) is x2+y22xy\frac{x^{2} + y^{2}}{2xy} then the equation of the curve is

A

2(x2y2)=3x2(x^{2} - y^{2}) = 3x

B

2(x2y2)=6x2(x^{2} - y^{2}) = 6x

C

x(x2y2)=6x(x^{2} - y^{2}) = 6

D

x(x2+y2)=10x(x^{2} + y^{2}) = 10

Answer

2(x2y2)=3x2(x^{2} - y^{2}) = 3x

Explanation

Solution

dydx=x2+y22xy.\frac{dy}{dx} = \frac{x^{2} + y^{2}}{2xy}. Put y=νxν+x.dνdx=s2+ν2x22νx2y = \nu x \Rightarrow \nu + x.\frac{d\nu}{dx} = \frac{s^{2} + \nu^{2}x^{2}}{2\nu x^{2}}

2ν1ν2.dν=dxx\frac{2\nu}{1 - \nu^{2}}.d\nu = \frac{dx}{x}

Integrating both sides, - log(1 - v2) = log x + log c

log(1y2x2)=logx+logc- \log\left( 1 - \frac{y^{2}}{x^{2}} \right) = \log x + \log c

This passes through (2,1)

log(114)=log2+logcc=23- \log\left( 1 - \frac{1}{4} \right) = \log 2 + \log c \Rightarrow c = \frac{2}{3}

From equation (i) log(x2x2y2)\log\left( \frac{x^{2}}{x^{2} - y^{2}} \right) = log xc

2(x2 - y2) = 3x.