Solveeit Logo

Question

Question: The slope of the tangent at (*x*, *y*) to a curve passing through \(\left( 1,\frac{\pi}{4} \right)\)...

The slope of the tangent at (x, y) to a curve passing through (1,π4)\left( 1,\frac{\pi}{4} \right) as given by yxcos2(yx)\frac{y}{x} - \cos^{2}\left( \frac{y}{x} \right), then the equation of the curve is

A

y=tan1[log(ex)]y = \tan^{- 1}\left\lbrack \log\left( \frac{e}{x} \right) \right\rbrack

B

y=xtan1[log(xe)]y = x\tan^{- 1}\left\lbrack \log\left( \frac{x}{e} \right) \right\rbrack

C

y=xtan1[log(ex)]y = x\tan^{- 1}\left\lbrack \log\left( \frac{e}{x} \right) \right\rbrack

D

None of these

Answer

y=xtan1[log(ex)]y = x\tan^{- 1}\left\lbrack \log\left( \frac{e}{x} \right) \right\rbrack

Explanation

Solution

We have dydx=yxcos2(yx)\frac{dy}{dx} = \frac{y}{x} - \cos^{2}\left( \frac{y}{x} \right)

Let y = vx ⇒ dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}v+xdvdx=vcos2vv + x\frac{dv}{dx} = v - \cos^{2}v

xdvdx=cos2vx\frac{dv}{dx} = - \cos^{2}vsec2vdv=dxx\sec^{2}vdv = - \frac{dx}{x} ⇒ tan v = – ln x + c

⇒ tan (y/x) = – ln x + c

For x = 1, y = π/4

tanπ/4=ln1+c\tan\pi/4 = - \ln 1 + c1=0+c1 = 0 + c

∴ c = 1

tan(y/x)=1lnx\tan(y/x) = 1 - \ln x

y/x=tan1(1lnx)=tan1(lnelnx)=tan1[ln(ex)]y/x = \tan^{- 1}(1 - \ln x) = \tan^{- 1}(\ln e - \ln x) = \tan^{- 1}\left\lbrack \ln\left( \frac{e}{x} \right) \right\rbrack

y=xtan1[ln(ex)]y = x\tan^{- 1}\left\lbrack \ln\left( \frac{e}{x} \right) \right\rbrack