Question
Question: The slope of the tangent at (*x*, *y*) to a curve passing through \(\left( 1,\frac{\pi}{4} \right)\)...
The slope of the tangent at (x, y) to a curve passing through (1,4π) as given by xy−cos2(xy), then the equation of the curve is
A
y=tan−1[log(xe)]
B
y=xtan−1[log(ex)]
C
y=xtan−1[log(xe)]
D
None of these
Answer
y=xtan−1[log(xe)]
Explanation
Solution
We have dxdy=xy−cos2(xy)
Let y = vx ⇒ dxdy=v+xdxdv ⇒ v+xdxdv=v−cos2v
⇒ xdxdv=−cos2v ⇒ sec2vdv=−xdx ⇒ tan v = – ln x + c
⇒ tan (y/x) = – ln x + c
For x = 1, y = π/4
⇒ tanπ/4=−ln1+c ⇒ 1=0+c
∴ c = 1
∴ tan(y/x)=1−lnx
⇒ y/x=tan−1(1−lnx)=tan−1(lne−lnx)=tan−1[ln(xe)]
∴ y=xtan−1[ln(xe)]