Solveeit Logo

Question

Mathematics Question on Conic sections

The slope of the line touching both the parabolas y2=4xy^2 = 4x and x2=32yx^2 = - 32y is :

A

18\frac{1}{8}

B

23\frac{2}{3}

C

12\frac{1}{2}

D

32\frac{3}{2}

Answer

12\frac{1}{2}

Explanation

Solution

y2=4x(i)y^{2}=4 x \,\,\,\,\,\dots(i) x2=32y(2)x^{2}=-32 y \,\,\,\,\, \ldots(2) mm be slope of common tangent Equation of tangent (1)(1) y=mx+1m(i)y=m x+\frac{1}{m} \,\,\,\,\dots(i) Equation of tangent (2) y=mx+8m2(iii)y=m x+8 m^{2} \,\,\,\,\dots(iii) (i) and (ii) are identical 1m=8m2\frac{1}{m}=8 m^{2} m3=18\Rightarrow m^{3}=\frac{1}{8} m=12 m=\frac{1}{2} : Let tangent to y2=4xy^{2}=4x be y=mx+1my=m x+\frac{1}{m} as this is also tangent to x2=32yx^{2}=-32y Solving x2+32mx+32m=0x^{2}+32 m x+\frac{32}{m}=0 Since roots are equal D=0\therefore \, D=0 (32)24×32m=0\Rightarrow(32)^{2}-4 \times \frac{32}{m}=0 m3=432\Rightarrow m^{3}=\frac{4}{32} m=12\Rightarrow m=\frac{1}{2}