Solveeit Logo

Question

Mathematics Question on Conic sections

The slope of the line touching both the parabolas y2=4x y^2 = 4x and x2=32yx^2 = - 32y is

A

44569

B

44595

C

44563

D

44622

Answer

44563

Explanation

Solution

Any tangent to y2=axy^{2}= ax is y=mx+1m...(1) y= mx+\frac{1}{m} \quad...\left(1\right) [Tangent toy2=4xisy=mx+am]\left[ {\text{Tangent to}} y^{2} = 4x is y = mx +\frac{a}{m}\right] (1)meetsx2=32y\left(1\right) meets x^{2}= -32y where x2=32(mx+1m)x^{2}= -32\left(mx+\frac{1}{m} \right) x2+32mx+32m=0...(2) \Rightarrow x^{2}+32mx +\frac{32}{m} = 0 \quad...\left(2\right) Since (1)\left(1\right) touches x2=32yx^{2} = -32y \therefore roots of (2)\left(2\right) are equal (32m)2=4132m\therefore \left(32m\right)^{2} = 4\cdot1\cdot\frac{32}{m} 8m2=1m \Rightarrow 8m^{2}= \frac{1}{m} 8m3\Rightarrow 8m^{3} m3=18 \Rightarrow m^{3} = \frac{1}{8 } m=12\Rightarrow m= \frac{1}{2}