Solveeit Logo

Question

Mathematics Question on Differential equations

The slope at any point of a curve y=f(x)y = f(x ) is given by dydx=3x2\frac{d y}{d x}=3x^{2} and it passes through (1,1)(-1 ,1 ) The equation of the curve is

A

y=x3+2y = x^{3}+2

B

y=x32y=-x^{3}-2

C

y=3x3+4y=3x^{3}+4

D

y=x3+2y=-x^{3}+2

Answer

y=x3+2y = x^{3}+2

Explanation

Solution

Given, dydx=3x2\frac{dy}{dx}=3x^{2}
dy=3x2dx\Rightarrow dy=3x^{2}dx
On integrating, we get
y=3x33+cy=\frac{3x^{3}}{3}+c
y=x3+c\Rightarrow y=x^{3}+c
It passes through (1,1)(-1 ,1 )
1=(1)3+c\therefore 1=\left(-1\right)^{3}+c
c=2\Rightarrow c=2
y=x3+2\therefore y=x^{3}+2