Solveeit Logo

Question

Question: The sixth term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes ...

The sixth term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes the product a1a4a5a _ { 1 } a _ { 4 } a _ { 5 } least is given by.

A

x=85x = \frac { 8 } { 5 }

B

x=54x = \frac { 5 } { 4 }

C

x=2/3x = 2 / 3

D

None of these

Answer

x=2/3x = 2 / 3

Explanation

Solution

Let aa be the first term and xx be the common difference of the A.P. Then a+5x=2a + 5 x = 2 \Rightarrow a=25xa = 2 - 5 x

LetP=a1a4a5=a(a+3x)(a+4x)P = a _ { 1 } a _ { 4 } a _ { 5 } = a ( a + 3 x ) ( a + 4 x )

=(25x)(22x)(2x)=2(5x3+17x216x+4)= ( 2 - 5 x ) ( 2 - 2 x ) ( 2 - x ) = 2 \left( - 5 x ^ { 3 } + 17 x ^ { 2 } - 16 x + 4 \right)

Now dPdx=0\frac { d P } { d x } = 0 \Rightarrow x=85,23x = \frac { 8 } { 5 } , \frac { 2 } { 3 } .

Clearly, d2Pdx2>0\frac { d ^ { 2 } P } { d x ^ { 2 } } > 0 for x=23x = \frac { 2 } { 3 }

Hence PP is least for x=23x = \frac { 2 } { 3 }.