Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The sixth term in the expansion of [2log29x1+7+1215log2(3x1+1)]\left[2^{\log _{2} \sqrt{9^{x-1}+7}}+\frac{1}{2^{\frac{1}{5} \log _{2}\left(3^{x-1}+1\right)}}\right] is 84. Then the number of values of xx is

A

00

B

11

C

22

D

33

Answer

22

Explanation

Solution

2log29x1+7=9x1+72^{log_2^{\sqrt{9^{x-1}+7}}} = \sqrt{9^{x-1}+7} 212log2(3x1+1)2^{\frac{1}{2}log_{2}\left(3^{x-1}+1\right)} =(3x1+1)1/5= \left(3^{x-1}+1\right)^{1/5} Also, the sixth term in the expansion is 8484 7C5(9x1+7)213x1+1=84\therefore \,^{7}C_{5}\left( \sqrt{9^{x-1}+7}\right)^{2}\cdot\frac{1}{3^{x-1}+1} = 84 9x1+73x1+1=8421\Rightarrow \frac{9^{x-1}+7}{3^{x-1}+1} = \frac{84}{21} (3x1)24(3x1)+3=0\Rightarrow \left( 3^{x-1}\right)^{2}- 4 \left( 3^{x-1}\right) + 3 = 0 (3x11)(3x13)=0\Rightarrow \left(3^{x-1}-1\right)\left(3^{x-1}-3\right) = 0 3x1=1\therefore 3^{x-1} = 1 or 33 x=1\Rightarrow x = 1 or 22.