Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The simplified form of tan1\tan^{-1} (xy)\left(\frac{x}{y}\right) tan1- \tan^{-1} (xyx+y)\left(\frac{x-y}{x+y}\right) is equal to

A

0

B

π4\frac {\pi} {4}

C

π2\frac {\pi} {2}

D

π\pi

Answer

π4\frac {\pi} {4}

Explanation

Solution

We have, tan1(xy)tan1(xyx+y)\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)
=tan1(xy)+tan1(yxy+x)=\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y-x}{y+x}\right)
=tan1(xy)+tan1(1x/y1+x/y)=\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{1-x / y}{1+x / y}\right)
=tan1(xy)+tan1(1)tan1(xy)=tan1(1)=\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}(1)-\tan ^{-1}\left(\frac{x}{y}\right)=\tan ^{-1}(1)
[tan1Atan1B=tan1(AB1+AB)]\left[\because \tan ^{-1} A-\tan ^{-1} B=\tan ^{-1}\left(\frac{A-B}{1+A B}\right)\right]
=π4=\frac{\pi}{4}