Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The simplified form of in+in+1+in+2+in+3i^{n} + i^{n +1} + i^{n +2} + i^{n +3} is

A

0

B

1

C

-1

D

i

Answer

0

Explanation

Solution

We have, in+in+1+in+2+in+3i^{n} +i^{n+1}+i^{n+2}+i^{n+3}
=in(1+i+i2+i3)=i^{n}\left(1+i+i^{2}+i^{3}\right)
=in(1+i1i)=i^{n}(1+i-1-i)
[i2=1 and i3=i]\left[\because i^{2}=-1 \text { and } i^{3}=-i\right]
=in×0=0=i^{n} \times 0=0