Solveeit Logo

Question

Physics Question on Oscillations

The simple pendulum acts as second's pendulum on earth. Its time on a planet, whose mass and diameter are twice that of earth is

A

2s\sqrt 2 s

B

22s2\sqrt 2 s

C

2 s

D

12s\frac{1}{\sqrt 2}s

Answer

22s2\sqrt 2 s

Explanation

Solution

Second's pendulum is that simpie pendulum whose time period of vibration is two second. The bob of such pendulum while oscillating passes through the mean position after every one second. Now, Time period of simple penduium is given by T=2π(lg) \, \, \, \, \, \, \, \, \, \, \, T=2\pi \sqrt{\bigg(\frac{l}{g}\bigg)} or T1g\, \, \, \, \, \, \, \, T \propto \frac{1}{\sqrt g} \, \, \, \, \, \, \, \, \, \, \, \, ... (i) but g=GMR2\, \, \, \, \, \, \, \, \, g=\frac{GM}{R^2} \, \, \, \, \, \, \, \, \, \, \, \,(on earth) and g=G(2m)4R2\, \, \, \, \, \, \, \, \, \, g'=\frac{G(2m)}{4R^2} \, \, \, \, \, \, \, \, \, \, \, \,(on planet) =12GMR2=g2 \, \, \, \, \, \, \, \, \, \, =\frac{1}{2}\frac{GM}{R^2} =\frac{g}{2} E (i) gives TT=gg=2 \, \, \, \, \, \, \, \frac{T'}{T} =\frac{\sqrt g}{\sqrt g'} =\sqrt 2 or T=2T \, \, \, \, \, \, \, T' =\sqrt 2 T T=2T \, \, \, \, \, \, \, \, \, \, \, \, \, T' =\sqrt 2T =2×2(T=2s) \, \, \, \, \, \, \, \, \, \, \, \, \, =\sqrt 2 \times 2 \, \, \, \, \, \, \, \, \, \, \, (T =2 s) or =22s \, \, \, \, \, \, \, \, \, \, \, \, = 2\sqrt 2 s