Solveeit Logo

Question

Question: The sides of the rectangle of the greatest area, that can be inscribed in the ellipse x<sup>2</sup> ...

The sides of the rectangle of the greatest area, that can be inscribed in the ellipse x2 + 2y2 = 8, are given by –

A

424 \sqrt { 2 } , 4

B

4, 222 \sqrt { 2 }

C

2, 2\sqrt { 2 }

D

) 2 2\sqrt { 2 } , 2

Answer

4, 222 \sqrt { 2 }

Explanation

Solution

Any point on the ellipse + = 1 is (2 2\sqrt { 2 } cos q, 2 sin q). (See Fig.)

A = Area of the inscribed rectangle

= 4(22\sqrt { 2 } cos q) (2 sin q)

= 82\sqrt { 2 } sin 2q

dAdθ\frac { \mathrm { dA } } { \mathrm { d } \theta } = 162\sqrt { 2 }cos 2q = 0 Ž q = p/4

Also = –322\sqrt { 2 }sin 2q < 0 for q = p/4.