Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

The sides of an equilateral triangle are increasing at the rate of 4 cm/sec. The rate at which its area is increasing, when the side is 14 cm.

A

42 cm2/seccm^2 / \sec

B

103cm2/sec 10\sqrt{3} cm^2 / \sec

C

14 cm2/seccm^2 / \sec

D

143cm2/sec 14 \sqrt{3} cm^2 / \sec

Answer

103cm2/sec 10\sqrt{3} cm^2 / \sec

Explanation

Solution

dxdt=4cm/sec,\frac{dx}{dt}=4cm/ sec, x=14cmx = 14cm A=34x2A=\frac{\sqrt{3}}{4} x^{2} dAdt=34×2xdxdt\frac{d A}{d t}=\frac{\sqrt{3}}{4} \times 2x \frac{d x}{d t} =32×14×4=\frac{\sqrt{3}}{2}\times14\times4 =3×7×4=\sqrt{3}\times7\times4 =283=28\sqrt{3}