Solveeit Logo

Question

Question: The sides a, b, c (taken in order) of a triangle \( \Delta ABC \) are in A.P. If \( \cos \alpha =\df...

The sides a, b, c (taken in order) of a triangle ΔABC\Delta ABC are in A.P. If cosα=ab+c\cos \alpha =\dfrac{a}{b+c} , cosβ=bc+a\cos \beta =\dfrac{b}{c+a} , cosγ=ca+b\cos \gamma =\dfrac{c}{a+b} , then tan2α2+tan2γ2{{\tan }^{2}}\dfrac{\alpha }{2}+{{\tan }^{2}}\dfrac{\gamma }{2} is equal to:
[Note: All symbols used have usual meanings in triangle ABC.]
A. 1
B. 12\dfrac{1}{2}
C. 13\dfrac{1}{3}
D. 23\dfrac{2}{3}

Explanation

Solution

Hint : Arithmetic Progression (A.P.): The series of numbers where the difference of any two consecutive terms is the same, is called an Arithmetic Progression.
If three numbers a, b and c are in A.P., then:
ba=cbb-a=c-b
2b=a+c2b=a+c
Use the fact that a, b, and c are in A.P. to eliminate one of these variables in the other expressions.
Use the identity cos2θ=1tan2θ1+tan2θ\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } to find the values of tan2α2{{\tan }^{2}}\dfrac{\alpha }{2} and tan2γ2{{\tan }^{2}}\dfrac{\gamma }{2} from the given expressions of cosα\cos \alpha and cosγ\cos \gamma .
Use componendo-dividendo: If a+bab=xy\dfrac{a+b}{a-b}=\dfrac{x}{y} , then ab=x+yxy\dfrac{a}{b}=\dfrac{x+y}{x-y} .

Complete step-by-step answer :
Since a, b and c are in A.P., we have 2b=a+c2b=a+c and c=2bac=2b-a .
It is given that cosα=ab+c\cos \alpha =\dfrac{a}{b+c} .
Using the half-angle formula cos2θ=1tan2θ1+tan2θ\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } and the given fact that c=2bac=2b-a , we get:
1tan2α21+tan2α2=a3ba\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}}=\dfrac{a}{3b-a}
Using componendo-dividendo, we get:
2tan2α22=(3ba)a(3ba)+a\dfrac{2{{\tan }^{2}}\dfrac{\alpha }{2}}{2}=\dfrac{(3b-a)-a}{(3b-a)+a}
tan2α2=3b2a3b{{\tan }^{2}}\dfrac{\alpha }{2}=\dfrac{3b-2a}{3b} ... (1)
Also, given that cosγ=ca+b\cos \gamma =\dfrac{c}{a+b} .
1tan2γ21+tan2γ2=2baa+b\dfrac{1-{{\tan }^{2}}\dfrac{\gamma }{2}}{1+{{\tan }^{2}}\dfrac{\gamma }{2}}=\dfrac{2b-a}{a+b}
Using componendo-dividendo, we get:
2tan2γ22=(a+b)(2ba)(a+b)+(2ba)\dfrac{2{{\tan }^{2}}\tfrac{\gamma }{2}}{2}=\dfrac{(a+b)-(2b-a)}{(a+b)+(2b-a)}
tan2γ2=2ab3b{{\tan }^{2}}\dfrac{\gamma }{2}=\dfrac{2a-b}{3b} ... (2)
Now, tan2α2+tan2γ2{{\tan }^{2}}\dfrac{\alpha }{2}+{{\tan }^{2}}\dfrac{\gamma }{2}
= 3b2a3b+2ab3b\dfrac{3b-2a}{3b}+\dfrac{2a-b}{3b} ... [Using (1) and (2)]
= 2b3b\dfrac{2b}{3b}
= 23\dfrac{2}{3}
So, the correct answer is “Option D”.

Note : Tangent half-angle formula:
sin2θ=2tanθ1+tan2θ\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }
cos2θ=1tan2θ1+tan2θ\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }
tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }
In any triangle ΔABC\Delta ABC , the convention is to name A=α\angle A=\alpha , B=β\angle B=\beta and C=γ\angle C=\gamma . The sides opposite to these angles are named a, b and c respectively.