Solveeit Logo

Question

Question: The sides \(a,b,c\) of \(\vartriangle ABC\), are in A.P. If \(\cos \alpha = \dfrac{a}{{b + c}}\), \(...

The sides a,b,ca,b,c of ABC\vartriangle ABC, are in A.P. If cosα=ab+c\cos \alpha = \dfrac{a}{{b + c}}, cosβ=bc+a\cos \beta = \dfrac{b}{{c + a}}, cosγ=ca+b\cos \gamma = \dfrac{c}{{a + b}} then tan2α2+tan2γ2={\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2} =
A.1
B.12\dfrac{1}{2}
C.13\dfrac{1}{3}
D.23\dfrac{2}{3}

Explanation

Solution

Since, the sides of the triangle are in A.P, let dd be the common difference of A.P and rewrite the sides as a=bda = b - d, bb and c=b+dc = b + d. Then, substitute the values in the given equation cosα=ab+c\cos \alpha = \dfrac{a}{{b + c}}, cosβ=bc+a\cos \beta = \dfrac{b}{{c + a}}, cosγ=ca+b\cos \gamma = \dfrac{c}{{a + b}} and simplify using the trigonometric formulas. Further, find the value of tan2α2+tan2γ2{\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}.

Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let dd be the common difference of A.P
Then, the sides of A.P. can be written as a=bda = b - d, bb and c=b+dc = b + d
Also, we are given than cosα=ab+c\cos \alpha = \dfrac{a}{{b + c}}
Substitute the value of a,b,ca,b,c in the equation.
cosα=bdb+b+d\cos \alpha = \dfrac{{b - d}}{{b + b + d}}
cosα=bd2b+d\Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}} (1)
Similarly, we will write the value of cosβ=bc+a\cos \beta = \dfrac{b}{{c + a}}
Hence, we get,
cosβ=bb+d+bd cosβ=b2b cosβ=12 β=60  \cos \beta = \dfrac{b}{{b + d + b - d}} \\\ \Rightarrow \cos \beta = \dfrac{b}{{2b}} \\\ \Rightarrow \cos \beta = \dfrac{1}{2} \\\ \Rightarrow \beta = {60^ \circ } \\\
Now, we will write the value of cosγ=ca+b\cos \gamma = \dfrac{c}{{a + b}}
cosγ=ca+b cosγ=b+dbd+b  \cos \gamma = \dfrac{c}{{a + b}} \\\ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\\
cosγ=b+d2bd\Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}} (2)
Now, we know that cos(2x)=1tan2x1+tan2x\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}
Therefore from equation (1), we have,
cosα=1tan2α21+tan2α2 bd2b+d=1tan2α21+tan2α2  \cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\\ \Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\\
We will solve the above equation to find the value of tan2α2{\tan ^2}\dfrac{\alpha }{2}
Use componendo and dividendo rules to simplify the equation.
bd2bdbd+2b+d=1tan2α21tan2α21tan2α2+1+tan2α2 b2d3b=2tan2α22 tan2α2=2d+b3b  \dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\\ \Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\\ \Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\\
Similarly, we will find the value of tan2γ2{\tan ^2}\dfrac{\gamma }{2} from equation (2)
cosγ=1tan2γ21+tan2α2 b+d2bd=1tan2γ21+tan2γ2  \Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\\ \Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\\
Use componendo and dividendo rules to simplify the equation.
b+d2b+db+d+2bd=1tan2γ21tan2γ21tan2γ2+1+tan2γ2 b+2d3b=2tan2γ22 tan2γ2=b2d3b  \dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\\ \Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\\ \Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\\
We will now substitute the values of tan2α2{\tan ^2}\dfrac{\alpha }{2} and tan2γ2{\tan ^2}\dfrac{\gamma }{2} in the expression tan2α2+tan2γ2{\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}
2d+b3b+b2d3b=2d+b+b2d3b 2b3b 23  \dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\\ \Rightarrow \dfrac{{2b}}{{3b}} \\\ \Rightarrow \dfrac{2}{3} \\\
Hence, the value of tan2α2+tan2γ2{\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2} is 23\dfrac{2}{3}.
Thus, option D is correct.

Note: Here, we have used the formula of cos(2x)=1tan2x1+tan2x\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}, where the angle gets half. Similarly, we have cos(2x)=cos2xsin2x\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x, cos(2x)=12sin2x\cos \left( {2x} \right) = 1 - 2{\sin ^2}x and cos(2x)=2cos2x1\cos \left( {2x} \right) = 2{\cos ^2}x - 1. Use the formula according to the condition in the question.