Question
Question: The sides \(a,b,c\) of \(\vartriangle ABC\), are in A.P. If \(\cos \alpha = \dfrac{a}{{b + c}}\), \(...
The sides a,b,c of △ABC, are in A.P. If cosα=b+ca, cosβ=c+ab, cosγ=a+bc then tan22α+tan22γ=
A.1
B.21
C.31
D.32
Solution
Since, the sides of the triangle are in A.P, let d be the common difference of A.P and rewrite the sides as a=b−d, b and c=b+d. Then, substitute the values in the given equation cosα=b+ca, cosβ=c+ab, cosγ=a+bc and simplify using the trigonometric formulas. Further, find the value of tan22α+tan22γ.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let d be the common difference of A.P
Then, the sides of A.P. can be written as a=b−d, b and c=b+d
Also, we are given than cosα=b+ca
Substitute the value of a,b,c in the equation.
cosα=b+b+db−d
⇒cosα=2b+db−d (1)
Similarly, we will write the value of cosβ=c+ab
Hence, we get,
cosβ=b+d+b−db ⇒cosβ=2bb ⇒cosβ=21 ⇒β=60∘
Now, we will write the value of cosγ=a+bc
cosγ=a+bc ⇒cosγ=b−d+bb+d
⇒cosγ=2b−db+d (2)
Now, we know that cos(2x)=1+tan2x1−tan2x
Therefore from equation (1), we have,
cosα=1+tan22α1−tan22α ⇒2b+db−d=1+tan22α1−tan22α
We will solve the above equation to find the value of tan22α
Use componendo and dividendo rules to simplify the equation.
b−d+2b+db−d−2b−d=1−tan22α+1+tan22α1−tan22α−1−tan22α ⇒3b−b−2d=2−2tan22α ⇒tan22α=3b2d+b
Similarly, we will find the value of tan22γ from equation (2)
⇒cosγ=1+tan22α1−tan22γ ⇒2b−db+d=1+tan22γ1−tan22γ
Use componendo and dividendo rules to simplify the equation.
b+d+2b−db+d−2b+d=1−tan22γ+1+tan22γ1−tan22γ−1−tan22γ ⇒3b−b+2d=2−2tan22γ ⇒tan22γ=3bb−2d
We will now substitute the values of tan22α and tan22γ in the expression tan22α+tan22γ
3b2d+b+3bb−2d=3b2d+b+b−2d ⇒3b2b ⇒32
Hence, the value of tan22α+tan22γ is 32.
Thus, option D is correct.
Note: Here, we have used the formula of cos(2x)=1+tan2x1−tan2x, where the angle gets half. Similarly, we have cos(2x)=cos2x−sin2x, cos(2x)=1−2sin2x and cos(2x)=2cos2x−1. Use the formula according to the condition in the question.