Solveeit Logo

Question

Physics Question on Atoms

The shortest wavelengths of Paschen, Balmer and Lyman series are in the ratio

A

9:1:49 : 1 : 4

B

1:4:91 : 4 : 9

C

9:4:19 : 4 : 1

D

1:9:41 : 9 : 4

Answer

9:4:19 : 4 : 1

Explanation

Solution

The shortest wavelength of Paschen (λP)(\lambda_P) Balmer (λB)(\lambda_B) and Lyman (λL)(\lambda_L) series are given by 1λP=RH32;1λB=RH22\frac{1}{\lambda_P} = \frac{R_H}{3^2} ; \frac{1}{\lambda_B} = \frac{R_H}{2^2} and 1λL=RH12\frac{1}{\lambda_L} = \frac{R_H}{1^2} So, λp=9RH,λB=4RH,λL=1RH\lambda_p = \frac{9}{R_H} , \lambda_B = \frac{4}{R_H} , \lambda_L = \frac{1}{R_H} λP:λB:λL=9:4:1\therefore \:\: \lambda_P : \lambda_B : \lambda_L = 9 : 4 : 1