Solveeit Logo

Question

Question: The shortest wavelength present in the Paschen series of spectral lines is...

The shortest wavelength present in the Paschen series of spectral lines is

A

720 nm

B

790 nm

C

800 nm

D

820 nm

Answer

820 nm

Explanation

Solution

The wavelength of the Paschen series

1λ=R[1321n2]\frac{1}{\lambda} = R\left\lbrack \frac{1}{3^{2}} - \frac{1}{n^{2}} \right\rbrack

For shortest wavelength n=n = \infty

1λ=R[1912]=R9\therefore\frac{1}{\lambda} = R\left\lbrack \frac{1}{9} - \frac{1}{\infty^{2}} \right\rbrack = \frac{R}{9}

λ=9R=91.097×107\lambda = \frac{9}{R} = \frac{9}{1.097 \times 10^{7}}

=8.20×107m=820nm.= 8.20 \times 10^{- 7}m = 820nm.