Solveeit Logo

Question

Question: The shortest wavelength in the Balmer series is \[(\text{Take }R = 1.097 \times 10^{7}\text{ }\text...

The shortest wavelength in the Balmer series is

(Take R=1.097×107 m1)(\text{Take }R = 1.097 \times 10^{7}\text{ }\text{m}^{- 1})

A

200 nm

B

256.8 nm

C

300 nm

D

364.6 nm

Answer

364.6 nm

Explanation

Solution

Wavelength of Balmer series is

1λ=R(1221n2)\frac{1}{\lambda} = R\left( \frac{1}{2^{2}} - \frac{1}{n^{2}} \right)

At n=n = \infty, the limit of the series observed

1λ=R(1412)\therefore\frac{1}{\lambda} = R\left( \frac{1}{4} - \frac{1}{\infty^{2}} \right)

1λ=R4orλ=4R\frac{1}{\lambda} = \frac{R}{4}or\lambda = \frac{4}{R}

Here, Rydberg’s constant

R=1.097×107m1R = 1.097 \times 10^{7}m^{- 1}

λ=41.097×107\therefore\lambda = \frac{4}{1.097 \times 10^{7}}

=364.6×109m=364.6nm= 364.6 \times 10^{- 9}m = 364.6nm