Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

The shortest distance (in units) between the lines 1x1=2y102=z+11\frac{1 - x}{1} = \frac{2y - 10}{2} = \frac{z + 1}{1} and x31=y51=z01\frac{x - 3}{-1} = \frac{y - 5}{1} = \frac{z - 0}{1} is:

A

314\frac{3}{\sqrt{14}}

B

113\frac{11}{3}

C

143\frac{14}{3}

D

113\frac{\sqrt{11}}{\sqrt{3}}

Answer

314\frac{3}{\sqrt{14}}

Explanation

Solution

To find the shortest distance between two skew lines, we use the formula:

d=d1(a2a1)d1×d2.d=\frac{|\vec{d_{1}}\cdot(\vec{a_{2}}-\vec{a_{1}})|}{|\vec{d_{1}}\times\vec{d_{2}}|}.

where a1\vec{a_{1}} and a2\vec{a_{2}} are points on the lines, and d1\vec{d_{1}} and d2\vec{d_{2}} are direction vectors.

For the first line:

d1=(1,2,1),a1=(1,5,1).\vec{d_{1}} = (1, 2, 1), \quad \vec{a_{1}} = (1, 5, -1).

For the second line:

d2=(1,1,1),a2=(3,5,0).\vec{d_{2}} = (-1, 1, 1), \quad \vec{a_{2}} = (3, 5, 0).

Calculate a2a1\vec{a_{2}} - \vec{a_{1}}:

a2a1=(31,55,0+1)=(2,0,1).\vec{a_{2}} - \vec{a_{1}} = (3 - 1, 5 - 5, 0 + 1) = (2, 0, 1).

Find the cross product d1×d2\vec{d_{1}} \times \vec{d_{2}}:

d1×d2=i^j^k^ 121 111=(21)i^(1(1))j^+(1(2))k^=(1,2,3).\vec{d_{1}} \times \vec{d_{2}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & 2 & 1 \\\ -1 & 1 & 1 \end{vmatrix} = (2 - 1)\hat{i} - (1 - (-1))\hat{j} + (1 - (-2))\hat{k} = (1, -2, 3).

Calculate the magnitude:

d1×d2=12+(2)2+32=1+4+9=14.|\vec{d_{1}} \times \vec{d_{2}}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}.

Now, find the dot product d1(a2a1)\vec{d_{1}} \cdot (\vec{a_{2}} - \vec{a_{1}}):

d1(a2a1)=12+20+11=2+0+1=3.\vec{d_{1}} \cdot (\vec{a_{2}} - \vec{a_{1}}) = 1 \cdot 2 + 2 \cdot 0 + 1 \cdot 1 = 2 + 0 + 1 = 3.

The shortest distance is:

d=314.d = \frac{3}{\sqrt{14}}.