Solveeit Logo

Question

Mathematics Question on Statistics

The shortest distance from the point (3,0)(3, 0) to the parabola y=x2y = x^2 is.

A

3\sqrt{3}

B

3

C

5

D

5\sqrt{5}

Answer

5\sqrt{5}

Explanation

Solution

Let (k,k2)(k, k^2) be any point on the parabola. d2=(k3)2+(k20)2d^2 = (k - 3)^2 + (k^2 - 0)^2
D=(k3)2+k4(D = (k - 3)^2 + k^4 \, \, \, \, \, \, \, \, ( where d2=D)d^2 = D)
differentiating w.r.t. k
dDdk=2(k3)+4k3\frac{dD}{dk} = 2 (k -3 )+ 4k^3 \, \, \, \, \, \, \, \, \, ....(i)
For maximum or minimum dDdk=0\frac{dD}{dk} = 0
2k6+4k3=02k3+k3=0\Rightarrow \, \, 2k-6+4k^3 =0 \, \Rightarrow 2k^3 + k - 3 = 0
(k1)(2k3+2k+3)=0\Rightarrow \, \, (k -1)(2k^3 +2k +3) =0
(k1)=0\Rightarrow \, \, \, (k -1 ) = 0 or 2k2+2k+3=0k=1 2k^2 +2k +3 = 0 \, \Rightarrow k= 1
Again differentiating?(i) w.r.t. k
d2Ddk2=2+12k2\frac{d^{2}D}{dk^{2}} = 2 + 12 k^2
[d2Ddk2]k=1=14>0\left[\frac{d^{2}D}{dk^{2}}\right]_{k=1} =14>0
Hence, at k=1k = 1, the distance is minimum.
Shortest distance =(13)2+(12)2=5 = \sqrt{ (1-3)^2 + (1^2)^2} = \sqrt{5}