Question
Mathematics Question on Three Dimensional Geometry
The shortest distance between the straight lines through the points A1=(6,2,2) and A2=(−4,0,−1), in the directions of (1,−2,2) and (3,−2,−2) is
6
8
12
9
9
Solution
Equation of first line,
1x−6=2y−2=2z−2=k(say)
∴x=k+6,y=−2k+2,z=2k+2
Hence, general point on the first line,
P≡(k+6,−2k+2,2k+2)
Equation of second line,
3x+4=−2y=−2Z+1=l(say)
∴x=3l−4,y=−2l,z=−2l−1
Hence, general point on the second line,
Q≡(3l−4,−2l,−2l−1)
Direction ratios of PQ are
3l−4−k−6,−2l+2k−2,−2l−1−2k−2
i.e. 3l−k−10,−2l+2k−2,−2l−2k−3
Now |PQ| will be the shortest distance
between the two lines if PQ is perpendicular
to both the lines. Hence,
1(3l−k−10)+(−2)
(−2l+2k−2)+2(−2l−2k−3)=0
and 3(3l−k−10)+(−2)(−2l+2k−2)+(−2)(−21−2k−3)=0
i.e.3l−9k=12orl−3k=4...(i)
and 17l−3k=20...(ii)
Subtracting equation (i) from(ii), we get
161=16∴l=1
Putting this value of l in equation \left(i\right), we get
−3k=3,∴k=−1
∴P≡(−1+6,−2(−1)+2,2(−1)+2)
≡(5,4,0)
Similarly, Q=(−1,−2,−3)
Hence, shortest distance, PQ,
=(−1−5)2+(−2−4)2+(−3−0)2
=(−6)2+(−6)2+(−3)2=36+36+9
=9 units