Solveeit Logo

Question

Mathematics Question on Straight lines

The shortest distance between the skew lines rˉ=(i+2jˉ+3kˉ)+t(i+3jˉ+2kˉ)\bar{r}=(i+2\bar{j}+3\bar{k})+t(i+3\bar{j}+2\bar{k}) and rˉ=(4i+5jˉ+6kˉ)+t(2i+3jˉ+kˉ)\bar{r}=(4i+5\bar{j}+6\bar{k})+t(2i+3\bar{j}+\bar{k}) is

A

6\sqrt6

B

3

C

232\sqrt3

D

3\sqrt3

Answer

3\sqrt3

Explanation

Solution

S.D = [ac,b,d][b×d]\frac{\left[\overline{a} -\overline{c},\overline{b},\overline{d}\right]}{\left[\overline{b}\times\overline{d}\right]} aˉcˉ=(i^+2j^+3k^)(4i^+5j^+6k^)\bar{a} - \bar{c} = (\hat{i} + 2 \hat{j} + 3\hat{k} ) - ( 4 \hat{i} + 5\hat{j} + 6\hat{k}) = 3i^3j^3k^=3(i^+j^+k^)-3\hat{i} - 3\hat{j} -3 \hat{k} = -3(\hat{i} +\hat{j} +\hat{k} ) bˉ=i^+3j^+k^\bar{b} = \hat{i} + 3\hat{j} + \hat{k}, aˉ=2i^+3j^+k^\bar{a} = 2\hat{i} +3\hat{j} +\hat{k} \therefore aˉ×bˉ=9+9+9=27=33|\bar{a} \times \bar{b} | = \sqrt{9+9+9} = \sqrt{27} = 3 \sqrt{3} \therefore S.D = 933=3\frac{9}{3 \sqrt{3}} = \sqrt{3}