Question
Mathematics Question on Shortest Distance between Two Lines
The shortest distance between the lines x+1=2y=−12z and x=y+2=6z−6 is
A
23
B
3
C
2
D
25
Answer
2
Explanation
Solution
The correct answer is (C) : 2
1x+1=21y=12−1z and 1x=1y+2=61z−6
⇒Shortest distance=∣p×q∣(b−a)⋅(p×q)
⇒S.D.=(−i^+2j^−k^)⋅∣p×q∣(p×q)
\Biggl\\{\vec{p}\times\vec{q} \equiv \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\1&\frac{1}{2}&\frac{-1}{12}\\\1&1&\frac{1}{6}\end{vmatrix}=\frac{1}{6}\hat{i}-\frac{1}{4}\hat{j}+\frac{1}{2}\hat{k} \text{ or } 2\hat{i}-3\hat{j}+6\hat{k} \Biggl\\}
⇒S.D.=22+32+62(−i^+2j^−k^).(2i^−3j^+6k^)