Solveeit Logo

Question

Question: The shortest distance between the lines whose equations are \(\overset{\rightarrow}{r}\)= t(\(\wideh...

The shortest distance between the lines whose equations are r\overset{\rightarrow}{r}= t(i^\widehat{i} + j^\widehat{j}+ k^\widehat{k}) and r\overset{\rightarrow}{r} = k^\widehat{k} + s (i^\widehat{i} – 2j^\widehat{j} + 3k^\widehat{k}) is :

A

3

B

338\frac{3}{\sqrt{38}}

C

314\frac{\sqrt{3}}{14}

D

213\frac{2}{\sqrt{13}}

Answer

338\frac{3}{\sqrt{38}}

Explanation

Solution

Shortest distance between two lines is given by

= (i^+j^+k^)×(i^2j^+3k^)(i^+j^+k^)×(i^2j^+3k^)k^\left| \frac{(\widehat{i} + \widehat{j} + \widehat{k}) \times (\widehat{i}–2\widehat{j} + 3\widehat{k})}{(\widehat{i} + \widehat{j} + \widehat{k}) \times (\widehat{i}–2\widehat{j} + 3\widehat{k})}\widehat{k} \right|

= (5i^2j^3k^)25+4+9k^\left| \frac{(5\widehat{i}–2\widehat{j}–3\widehat{k})}{\sqrt{25 + 4 + 9}}\widehat{k} \right|

= 338\frac{3}{\sqrt{38}}