Solveeit Logo

Question

Mathematics Question on Straight lines

The shortest distance between the lines r=(8+3λ)i^(9+16λ)j^+(10+7λ)k^\vec{r}=\left(8+3\lambda\right)\hat{i}-\left(9+16\lambda\right)\hat{j}+\left(10+7\lambda\right)\hat{k} and r=15i^+29j^+5k^+μ(3i^8j^5k^)\vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left(3\hat{i}-8\hat{j}-5\hat{k}\right) is

A

8484

B

1414

C

2121

D

1616

Answer

1414

Explanation

Solution

Given, equation of lines are r=(8+3λ)i^(9+16λ)j^+(10+7λ)k^\vec{r}=\left(8+3\lambda\right)\hat{i}-\left(9+16\lambda\right)\hat{j}+\left(10+7\lambda\right)\hat{k} i.e., r=8i^9j^+10k^+λ(3i^16j^+7k^)\vec{r}=8\hat{i}-9\hat{j}+10\hat{k}+\lambda\left(3\hat{i}-16\hat{j}+7\hat{k}\right) and r=15i^+29j^+5k^+μ(3i^+8j^5k^)\vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+\mu\left(3\hat{i}+8\hat{j}-5\hat{k}\right) Here, a1=8i^9j^+10k^\vec{a}_{1}=8\hat{i}-9\hat{j}+10\hat{k}, b1=3i^16j^+7k^\vec{b}_{1}=3\hat{i}-16\hat{j}+7\hat{k} a2=15i^+29j^+5k^\vec{a}_{2}=15\hat{i}+29\hat{j}+5\hat{k}, b2=3i^+8j^5k^\vec{b}_{2}=3\hat{i}+8\hat{j}-5\hat{k} a2a1=(15i^+29j^+5k^)(8i^9j^+10k^)\vec{a}_{2}-\vec{a}_{1}=\left(15\hat{i}+29\hat{j}+5\hat{k}\right)-\left(8\hat{i}-9\hat{j}+10\hat{k}\right) =7i^+38j^5k^=7\hat{i}+38\hat{j}-5\hat{k} b1×b2=i^(8056)j^(1521)+k^(24+48)\vec{b}_{1}\times\vec{b}_{2}=\hat{i}\left(80-56\right)-\hat{j}\left(-15-21\right)+\hat{k}\left(24+48\right) =(24i^+36j^+72k^)=\left(24\hat{i}+36\hat{j}+72\hat{k}\right) \therefore Shortest distance, d=(a2a1)(b1×b2)b1×b2d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right)\cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right| =(7i^+38j^5k^)(24i^+36j^+72k^)(24)2+(36)2+(72)2=\left|\frac{\left(7\hat{i}+38\hat{j}-5\hat{k}\right)\cdot\left(24\hat{i}+36\hat{j}+72\hat{k}\right)}{\sqrt{\left(24\right)^{2}+\left(36\right)^{2}+\left(72\right)^{2}}}\right| =168+1368360576+1296+5184=11767056=\left|\frac{168+1368-360}{\sqrt{576+1296+5184}}\right|=\left|\frac{1176}{\sqrt{7056}}\right| =117684=14=\frac{1176}{84}=14