Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

The shortest distance between the lines x32=y23=z11\frac{x−3}{2}=\frac{y−2}{3}=\frac{z−1}{−1} and x+32=y61=z53\frac{x+3}{2}=\frac{y-6}{1}=\frac{z−5}{3} is

A

185\frac{18}{\sqrt5}

B

2235\frac{22}{3\sqrt5}

C

4635\frac{46}{3\sqrt5}

D

636\sqrt3

Answer

185\frac{18}{\sqrt5}

Explanation

Solution

L1L_1 : x32=y23=z11\frac{x−3}{2}=\frac{y−2}{3}=\frac{z−1}{−1}

L2L_2 : x+32=y61=z53\frac{x+3}{2}=\frac{y-6}{1}=\frac{z−5}{3}

Now,

p×q\overrightarrow p×\overrightarrow q = i^j^k^ 231 213=10i^8j^4k^\begin{vmatrix}\hat i& \hat j& \hat k\\\ 2 &3 &−1 \\\ 2 & 1& 3 \end{vmatrix} =10\hat i−8\hat j−4\hat k

a2a1=6i^4j^4k^\overrightarrow a_2−\overrightarrow a_1=6\hat i−4\hat j−4\hat k

S.D=60+32+16100+64+16∴S.D=\begin{vmatrix}\frac{60+32+16}{\sqrt{100+64+16}}\end{vmatrix}

= 108180=185\frac{108}{\sqrt{180}}=\frac{18}{\sqrt5}