Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The shortest distance between the lines x1=y1=z1\frac{x}{-1}=\frac{y}{1}=\frac{z}{1} and x30=y+31=z31\frac{x-3}{0}=\frac{y+3}{1}=\frac{z-3}{-1} is

A

6\sqrt{6}

B

66

C

232\sqrt{3}

D

323\sqrt{2}

Answer

6\sqrt{6}

Explanation

Solution

Given, lines are x1=y1=z1\frac{x}{-1}=\frac{y}{1}=\frac{z}{1} and x30=y+31=z31\frac{x-3}{0}=\frac{y+3}{1}=\frac{z-3}{-1} Here, x1=0,y1=0,z1=0{{x}_{1}}=0,\,{{y}_{1}}=0,\,{{z}_{1}}=0 l1=1,m1,=1,n1=1{{l}_{1}}=-1,{{m}_{1}},=1,{{n}_{1}}=1 and x2=3,y2=3,z2=3{{x}_{2}}=3,\,{{y}_{2}}=-3,\,{{z}_{2}}=3 l2=0,m2=1,n2=1{{l}_{2}}=0,{{m}_{2}}=1,{{n}_{2}}=-1
Now, shortest distance d=x2x1y2y1z2z1 I1m1n1 I2m2n2 (m1n2m2n1)2+(n1I2n2I1)2+(I1m2I2m1)2d=\left| \frac{\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\\ {{I}_{1}} & {{m}_{1}} & {{n}_{1}} \\\ {{I}_{2}} & {{m}_{2}} & {{n}_{2}} \\\ \end{matrix} \right|}{\sqrt{{{({{m}_{1}}{{n}_{2}}-{{m}_{2}}{{n}_{1}})}^{2}}+{{({{n}_{1}}{{I}_{2}}-{{n}_{2}}{{I}_{1}})}^{2}}+{{({{I}_{1}}{{m}_{2}}-{{I}_{2}}{{m}_{1}})}^{2}}}} \right|
=333 111 011 (11)2+(01)2+(10)2=\left| \frac{\left| \begin{matrix} 3 & -3 & 3 \\\ -1 & 1 & 1 \\\ 0 & 1 & -1 \\\ \end{matrix} \right|}{\sqrt{{{(-1-1)}^{2}}+{{(0-1)}^{2}}+{{(-1-0)}^{2}}}} \right|
=3(11)+3(10)+3(10)4+1+1=\left| \frac{3(-1-1)+3(1-0)+3(-1-0)}{\sqrt{4+1+1}} \right|
=6+336=6=6=\left| \frac{-6+3-3}{\sqrt{6}} \right|=|-\sqrt{6}|=\sqrt{6}