Question
Mathematics Question on Shortest Distance between Two Lines
The shortest distance between the lines
2x−3=−7y+15=5z−9and
2x+1=1y−1=−3z−9 is:
A
63
B
43
C
53
D
83
Answer
43
Explanation
Solution
The shortest distance between the given lines is calculated as:
S.D.=∣b1×b2∣∣(a2−a1)⋅(b1×b2)∣.
- Step 1: Extract points and direction vectors: From the first line: a1=(3,−15,9),b1=(2,−7,5). From the second line: a2=(−1,1,9),b2=(2,1,−3).
- Step 2: Compute b1×b2: b1×b2=i^ 2 2j^−71k^5−3. Expanding the determinant: b1×b2=i^[(16)−(−5)]−j^[(10)−(−6)]+k^[(2)−(−14)]. Simplify: b1×b2=21i^−16j^+16k^.
- Step 3: Magnitude of b1×b2: ∣b1×b2∣=212+(−16)2+162. Simplify: ∣b1×b2∣=441+256+256=953.
- Step 4: Find a2−a1: a2−a1=(−1−3,1−(−15),9−9)=(−4,16,0).
- Step 5: Dot product (a2−a1)⋅(b1×b2): (a2−a1)⋅(b1×b2)=(−4)(21)+(16)(−16)+(0)(16). Simplify: (a2−a1)⋅(b1×b2)=−84−256+0=−340.
- Step 6: Shortest distance: Substitute into the formula: S.D.=∣b1×b2∣∣(a2−a1)⋅(b1×b2)∣=953∣−340∣. Simplify: S.D.=953340=43.