Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

The shortest distance between the lines
x32=y+157=z95\frac{x - 3}{2} = \frac{y + 15}{-7} = \frac{z - 9}{5}and
x+12=y11=z93\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z - 9}{-3} is:

A

636\sqrt{3}

B

434\sqrt{3}

C

535\sqrt{3}

D

838\sqrt{3}

Answer

434\sqrt{3}

Explanation

Solution

The shortest distance between the given lines is calculated as:

S.D.=(a2a1)(b1×b2)b1×b2.S.D. = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}.

  1. Step 1: Extract points and direction vectors: From the first line: a1=(3,15,9),b1=(2,7,5).\vec{a}_1 = (3, -15, 9), \quad \vec{b}_1 = (2, -7, 5). From the second line: a2=(1,1,9),b2=(2,1,3).\vec{a}_2 = (-1, 1, 9), \quad \vec{b}_2 = (2, 1, -3).
  2. Step 2: Compute b1×b2\vec{b}_1 \times \vec{b}_2: b1×b2=i^j^k^ 275 213.\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 2 & -7 & 5 \\\ 2 & 1 & -3 \end{vmatrix}. Expanding the determinant: b1×b2=i^[(16)(5)]j^[(10)(6)]+k^[(2)(14)].\vec{b}_1 \times \vec{b}_2 = \hat{i}[(16) - (-5)] - \hat{j}[(10) - (-6)] + \hat{k}[(2) - (-14)]. Simplify: b1×b2=21i^16j^+16k^.\vec{b}_1 \times \vec{b}_2 = 21\hat{i} - 16\hat{j} + 16\hat{k}.
  3. Step 3: Magnitude of b1×b2\vec{b}_1 \times \vec{b}_2: b1×b2=212+(16)2+162.|\vec{b}_1 \times \vec{b}_2| = \sqrt{21^2 + (-16)^2 + 16^2}. Simplify: b1×b2=441+256+256=953.|\vec{b}_1 \times \vec{b}_2| = \sqrt{441 + 256 + 256} = \sqrt{953}.
  4. Step 4: Find a2a1\vec{a}_2 - \vec{a}_1: a2a1=(13,1(15),99)=(4,16,0).\vec{a}_2 - \vec{a}_1 = (-1 - 3, 1 - (-15), 9 - 9) = (-4, 16, 0).
  5. Step 5: Dot product (a2a1)(b1×b2)(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2): (a2a1)(b1×b2)=(4)(21)+(16)(16)+(0)(16).(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = (-4)(21) + (16)(-16) + (0)(16). Simplify: (a2a1)(b1×b2)=84256+0=340.(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = -84 - 256 + 0 = -340.
  6. Step 6: Shortest distance: Substitute into the formula: S.D.=(a2a1)(b1×b2)b1×b2=340953.S.D. = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|} = \frac{|-340|}{\sqrt{953}}. Simplify: S.D.=340953=43.S.D. = \frac{340}{\sqrt{953}} = 4\sqrt{3}.