Solveeit Logo

Question

Mathematics Question on Straight lines

The shortest distance between the line yx=1y-x=1 and the curve x=y2x = y^2 is

A

328\frac{3\sqrt{2}}{8}

B

238\frac{2\sqrt{3}}{8}

C

325\frac{3\sqrt{2}}{5}

D

34\frac{\sqrt{3}}{4}

Answer

328\frac{3\sqrt{2}}{8}

Explanation

Solution

xy+1=0(1)x - y + 1= 0 \dots\left(1\right) x=y2x=y^{2} 12ydydxdydx=12y=1-2y \frac{dy}{dx} \Rightarrow \frac{dy}{dx}=\frac{1}{2y}= Slope of given line (1)\left(1\right) 12y=1y=12x=(12)2=14(x,y)=(14,12)\frac{1}{2y}=1 \Rightarrow y=\frac{1}{2} \Rightarrow x=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \Rightarrow \left(x, y\right)=\cdot\left(\frac{1}{4}, \frac{1}{2}\right) \therefore The shortest distance is 1412+11+1=342=328\frac{\left|\frac{1}{4}-\frac{1}{2}+1\right|}{\sqrt{1+1}}=\frac{3}{4\sqrt{2}}=\frac{3\sqrt{2}}{8} Question number 86 to 90 are Assertion - Reason type questions. Each of these questions contains two statements Each of these questions also have four alternative choices, only one of which is the correct answer. You have to select the correct choice