Question
Mathematics Question on Shortest Distance between Two Lines
The shortest distance between the line:
4x−3=−11y+7=5z−1 and 3x−5=−6y−9=1z+2 is:
563187
563178
563185
563179
563187
Solution
Step 1: Represent the lines in vector form The first line can be written as:
r1=a1+λp,where a1=3i^−7j^+k^,p=4i^−11j^+5k^.
The second line can be written as:
r2=a2+μq,where a2=5i^+9j^−2k^,q=3i^−6j^+k^.
Step 2: Find the direction vector perpendicular to both lines The direction vector perpendicular to both lines is:
n=p×q.
Using the determinant method for the cross product:
n=i^ 4 3j^−11−6k^51.
Expanding the determinant:
n=i^((−11)(1)−(−6)(5))−j^((4)(1)−(3)(5))+k^((4)(−6)−(3)(−11)).
n=i^(−11+30)−j^(4−15)+k^(−24+33).
n=19i^+11j^+9k^.
Step 3: Find AB The vector AB is:
AB=a2−a1=(5−3)i^+(9−(−7))j^+(−2−1)k^.
AB=2i^+16j^−3k^.
Step 4: Shortest distance formula The shortest distance between two skew lines is:
S.D.=∣n∣∣AB⋅n∣.
Dot product AB⋅n:
AB⋅n=(2)(19)+(16)(11)+(−3)(9).
AB⋅n=38+176−27=187.
Magnitude of n:
∣n∣=192+112+92.
∣n∣=361+121+81=563.
Shortest distance:
S.D.=∣n∣∣AB⋅n∣=563187.
Final Answer: Option (1).