Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

The shortest distance between the line:
x34=y+711=z15\frac{x-3}{4} = \frac{y+7}{-11} = \frac{z-1}{5} and x53=y96=z+21\frac{x-5}{3} = \frac{y-9}{-6} = \frac{z+2}{1} is:

A

187563\frac{187}{\sqrt{563}}

B

178563\frac{178}{\sqrt{563}}

C

185563\frac{185}{\sqrt{563}}

D

179563\frac{179}{\sqrt{563}}

Answer

187563\frac{187}{\sqrt{563}}

Explanation

Solution

Step 1: Represent the lines in vector form The first line can be written as:

r1=a1+λp,where a1=3i^7j^+k^,p=4i^11j^+5k^.\vec{r_1} = \vec{a_1} + \lambda \vec{p}, \quad \text{where } \vec{a_1} = 3\hat{i} - 7\hat{j} + \hat{k}, \quad \vec{p} = 4\hat{i} - 11\hat{j} + 5\hat{k}.

The second line can be written as:

r2=a2+μq,where a2=5i^+9j^2k^,q=3i^6j^+k^.\vec{r_2} = \vec{a_2} + \mu \vec{q}, \quad \text{where } \vec{a_2} = 5\hat{i} + 9\hat{j} - 2\hat{k}, \quad \vec{q} = 3\hat{i} - 6\hat{j} + \hat{k}.

Step 2: Find the direction vector perpendicular to both lines The direction vector perpendicular to both lines is:

n=p×q.\vec{n} = \vec{p} \times \vec{q}.

Using the determinant method for the cross product:

n=i^j^k^ 4115 361.\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 4 & -11 & 5 \\\ 3 & -6 & 1 \end{vmatrix}.

Expanding the determinant:

n=i^((11)(1)(6)(5))j^((4)(1)(3)(5))+k^((4)(6)(3)(11)).\vec{n} = \hat{i}((-11)(1) - (-6)(5)) - \hat{j}((4)(1) - (3)(5)) + \hat{k}((4)(-6) - (3)(-11)).

n=i^(11+30)j^(415)+k^(24+33).\vec{n} = \hat{i}(-11 + 30) - \hat{j}(4 - 15) + \hat{k}(-24 + 33).

n=19i^+11j^+9k^.\vec{n} = 19\hat{i} + 11\hat{j} + 9\hat{k}.

Step 3: Find AB\vec{AB} The vector AB\vec{AB} is:

AB=a2a1=(53)i^+(9(7))j^+(21)k^.\vec{AB} = \vec{a_2} - \vec{a_1} = (5 - 3)\hat{i} + (9 - (-7))\hat{j} + (-2 - 1)\hat{k}.

AB=2i^+16j^3k^.\vec{AB} = 2\hat{i} + 16\hat{j} - 3\hat{k}.

Step 4: Shortest distance formula The shortest distance between two skew lines is:

S.D.=ABnn.\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|}.

Dot product ABn\vec{AB} \cdot \vec{n}:

ABn=(2)(19)+(16)(11)+(3)(9).\vec{AB} \cdot \vec{n} = (2)(19) + (16)(11) + (-3)(9).

ABn=38+17627=187.\vec{AB} \cdot \vec{n} = 38 + 176 - 27 = 187.

Magnitude of n\vec{n}:

n=192+112+92.|\vec{n}| = \sqrt{19^2 + 11^2 + 9^2}.

n=361+121+81=563.|\vec{n}| = \sqrt{361 + 121 + 81} = \sqrt{563}.

Shortest distance:

S.D.=ABnn=187563.\text{S.D.} = \frac{|\vec{AB} \cdot \vec{n}|}{|\vec{n}|} = \frac{187}{\sqrt{563}}.

Final Answer: Option (1).