Solveeit Logo

Question

Question: The shortest distance between the following pair of lines: $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} ...

The shortest distance between the following pair of lines: r=i^+2j^4k^+λ(2i^+3j^+6k^)\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k}) and r=3i^+3j^5k^+μ(2i^+3j^+6k^)\vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k}) is 293K\frac{\sqrt{293}}{K}.

Find the value of KK.

Answer

7

Explanation

Solution

Solution:

  1. Identify Points and Direction Vector:
    Line 1 passes through A(1,2,4)A(1,2,-4) with direction vector d=(2,3,6)\vec{d} = (2,3,6).
    Line 2 passes through B(3,3,5)B(3,3,-5) with the same direction vector d=(2,3,6)\vec{d} = (2,3,6).

  2. Find Vector Connecting the Two Points:
    AB=BA=(31,  32,  5(4))=(2,1,1)\vec{AB} = B - A = (3-1,\; 3-2,\; -5-(-4)) = (2,\,1,\,-1).

  3. Compute the Cross Product AB×d\vec{AB} \times \vec{d}:

    AB×d=i^j^k^211236=i^(16(1)3)j^(26(1)2)+k^(2312)\vec{AB} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 2 & 3 & 6 \\ \end{vmatrix} = \hat{i}(1\cdot6 - (-1)\cdot3) - \hat{j}(2\cdot6 - (-1)\cdot2) + \hat{k}(2\cdot3-1\cdot2) =i^(6+3)j^(12+2)+k^(62)=(9,14,4).= \hat{i}(6+3) - \hat{j}(12+2) + \hat{k}(6-2) = (9,\,-14,\,4).
  4. Calculate the Magnitudes:

    AB×d=92+(14)2+42=81+196+16=293.|\vec{AB} \times \vec{d}| = \sqrt{9^2 + (-14)^2 + 4^2} = \sqrt{81 + 196 + 16} = \sqrt{293}. d=22+32+62=4+9+36=49=7.|\vec{d}| = \sqrt{2^2+3^2+6^2} = \sqrt{4+9+36} = \sqrt{49} = 7.
  5. Determine the Shortest Distance:

    Distance=AB×dd=2937.\text{Distance} = \frac{|\vec{AB} \times \vec{d}|}{|\vec{d}|} = \frac{\sqrt{293}}{7}.

    This is given as 293K\frac{\sqrt{293}}{K}, which implies K=7K = 7.