Solveeit Logo

Question

Mathematics Question on 3D Geometry

The shortest distance between lines L1L_1 and L2L_2, where L1:x12=y+13=z+42L_1 : \frac{x - 1}{2} = \frac{y + 1}{-3} = \frac{z + 4}{2} and L2L_2 is the line passing through the points A(4,4,3)A(-4, 4, 3), B(1,6,3)B(-1, 6, 3) and perpendicular to the line x32=y3=z11\frac{x - 3}{-2} = \frac{y}{3} = \frac{z - 1}{1}, is

A

121221\frac{121}{\sqrt{221}}

B

24117\frac{24}{\sqrt{117}}

C

141221\frac{141}{\sqrt{221}}

D

42117\frac{42}{\sqrt{117}}

Answer

141221\frac{141}{\sqrt{221}}

Explanation

Solution

Identify direction ratios and vector between points on the lines. The direction ratios of L1L_1 are 2,3,2\langle 2, -3, 2 \rangle, and the direction ratios of L2L_2 are 3,2,0\langle 3, 2, 0 \rangle (since zz is constant, indicating parallel planes along the zz-axis).

Compute vector AB\overrightarrow{AB} between points on L1L_1 and L2L_2. Select points A(1,1,4)A(1, -1, -4) on L1L_1 and B(4,4,3)B(-4, 4, 3) on L2L_2. Calculate AB\overrightarrow{AB}:

AB=41,4(1),3(4)=5,5,7.\overrightarrow{AB} = \langle -4 - 1, 4 - (-1), 3 - (-4) \rangle = \langle -5, 5, 7 \rangle.

Use the shortest distance formula. The shortest distance (S.D.) between two skew lines with direction vectors d1=2,3,2\overrightarrow{d_1} = \langle 2, -3, 2 \rangle and d2=3,2,0\overrightarrow{d_2} = \langle 3, 2, 0 \rangle, and a vector AB\overrightarrow{AB} between points on each line, is given by:

S.D=AB(d1×d2)d1×d2.\text{S.D} = \frac{|\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})|}{|\overrightarrow{d_1} \times \overrightarrow{d_2}|}.

Calculate d1×d2\overrightarrow{d_1} \times \overrightarrow{d_2}:

d1×d2=ijk 232 320.\overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\\ 2 & -3 & 2 \\\ 3 & 2 & 0 \end{vmatrix}.

Expanding the determinant:

=i((3)(0)(2)(2))j((2)(0)(2)(3))+k((2)(2)(3)(3)),= \mathbf{i}((-3)(0) - (2)(2)) - \mathbf{j}((2)(0) - (2)(3)) + \mathbf{k}((2)(2) - (-3)(3)), =i(4)j(6)+k(4+9),= \mathbf{i}(-4) - \mathbf{j}(-6) + \mathbf{k}(4 + 9), =4,6,13.= \langle -4, 6, 13 \rangle.

Compute AB(d1×d2)\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2})

AB(d1×d2)=5,5,74,6,13,\overrightarrow{AB} \cdot (\overrightarrow{d_1} \times \overrightarrow{d_2}) = \langle -5, 5, 7 \rangle \cdot \langle -4, 6, 13 \rangle, =(5)(4)+(5)(6)+(7)(13),= (-5)(-4) + (5)(6) + (7)(13), =20+30+91=141.= 20 + 30 + 91 = 141.

Calculate d1×d2|\overrightarrow{d_1} \times \overrightarrow{d_2}|

d1×d2=(4)2+62+132=16+36+169=221.|\overrightarrow{d_1} \times \overrightarrow{d_2}| = \sqrt{(-4)^2 + 6^2 + 13^2} = \sqrt{16 + 36 + 169} = \sqrt{221}.

Substitute values into the shortest distance formula:

S.D=141221=141221.\text{S.D} = \frac{|141|}{\sqrt{221}} = \frac{141}{\sqrt{221}}.

Therefore, the answer is:

141221.\frac{141}{\sqrt{221}}.