Solveeit Logo

Question

Question: The shaded region in the figure is the solution set of the in equations. ![](https://www.vedantu.c...

The shaded region in the figure is the solution set of the in equations.

A. 5x+4y205x + 4y \geqslant 20, x6x \leqslant 6,y3y \geqslant 3, x0x \geqslant 0,y2y \geqslant 2
B. 5x+4y205x + 4y \geqslant 20,x6x \geqslant 6, y3y \leqslant 3, x0x \geqslant 0,y2y \geqslant 2
C.5x+4y205x + 4y \geqslant 20,x6x \leqslant 6, y3y \leqslant 3, x0x \geqslant 0,y0y \geqslant 0
D. 5x+4y205x + 4y \leqslant 20, x6x \leqslant 6, y3y \leqslant 3, x0x \geqslant 0,y2y \geqslant 2

Explanation

Solution

First we will see from the given figure that the shaded region lies above xx–axis, the shaded region is on the left of x=6x = 6, the shaded region is below y=3y = 3, lies above yy–axis and then use the formula of the equation of a line isyy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right), where line passing through the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) to find the required value.

Complete step-by-step answer:
Since we have seen in the given figure that the shaded region lies above xx–axis, we get
y0\Rightarrow y \geqslant 0
Also from the given figure, the shaded region is on the left of x=6x = 6, we get
x6\Rightarrow x \leqslant 6

So from the given figure, the shaded region is below y=3y = 3, we get
y3\Rightarrow y \leqslant 3
Since we have seen in the given figure that the shaded region lies above yy–axis, we get
x0\Rightarrow x \geqslant 0
We know that the formula of the equation of a line isyy1=y2y1x2x1(xx1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right), where line passing through the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right).
Substituting the value of points (4,0)\left( {4,0} \right) and (0,0)\left( {0,0} \right) the above formula of equation of line, we get

y0=5004(x4) y=54(x4)  \Rightarrow y - 0 = \dfrac{{5 - 0}}{{0 - 4}}\left( {x - 4} \right) \\\ \Rightarrow y = - \dfrac{5}{4}\left( {x - 4} \right) \\\

Cross-multiplying the above equation, we get

4y=5(x4) 4y=5x+20  \Rightarrow 4y = - 5\left( {x - 4} \right) \\\ \Rightarrow 4y = - 5x + 20 \\\

Adding the above equation with 5x5x on both sides, we get

4y+5x=5x+20+5x 5x+4y=20  \Rightarrow 4y + 5x = - 5x + 20 + 5x \\\ \Rightarrow 5x + 4y = 20 \\\

If we take 5x+4y205x + 4y \geqslant 20, put (0,0)\left( {0,0} \right) in the equation, we get

5(0)+4(0)20 0+020 020  \Rightarrow 5\left( 0 \right) + 4\left( 0 \right) \geqslant 20 \\\ \Rightarrow 0 + 0 \geqslant 20 \\\ \Rightarrow 0 \geqslant 20 \\\

Since the above result is false, so 5x+4y205x + 4y \leqslant 20.
Thus, we have found out that 5x+4y205x + 4y \geqslant 20,x6x \leqslant 6, y3y \leqslant 3, x0x \geqslant 0,y0y \geqslant 0.
Hence, option C is correct.

Note: We need to know when the top side of the boundary line for the inequality symbols >> or \geqslant. And the bottom side of the boundary line for the inequality symbols << or\leqslant. We have to be careful and examine the region carefully to avoid incorrect options. Since each of the options are really similar so mark the correct option carefully.