Solveeit Logo

Question

Mathematics Question on permutations and combinations

The set S=\left\\{1, 2, 3, \dots, 12\right\\} is to be partitioned into three sets A,B,CA, B, C of equal size. Thus, ABC=S,AB=BC=AC=ϕ.A\cup B\cup C=S, A\cap B = B\cap C = A \cap C=\phi. The number of ways to partition SS is

A

12!3!(4!)3\frac{12!}{3!\left(4!\right)^{3}}

B

12!3!(3!)4\frac{12!}{3!\left(3!\right)^{4}}

C

12!(4!)3\frac{12!}{\left(4!\right)^{3}}

D

12!(3!)4\frac{12!}{\left(3!\right)^{4}}

Answer

12!(4!)3\frac{12!}{\left(4!\right)^{3}}

Explanation

Solution

Number of ways is 12C4×8C4×4C4^{12}C_{4}\times^{8}C_{4}\times^{4}C_{4} =12!(4!)3=\frac{12!}{\left(4!\right)^{3}}