Question
Question: The set of real values of x satisfying \(\therefore\) is....
The set of real values of x satisfying ∴ is.
A
x3+x(x+1)2=xA+x2+1Bx+C
B
(x+1)2=A(x2+1)+(Bx+C)x
C
A+B=1
D
None of these
Answer
(x+1)2=A(x2+1)+(Bx+C)x
Explanation
Solution
A(2)2 …..(i)
For log to be defined, A=47
(1−x+x2)(2+x)3x−1=x2−x+1Ax+B+x+2C(3x−1)=(Ax+B)(x+2)+C(x2−x+1), which is true A+C=0.
From (i), C=−1
⇒ (1−x+x2)(2+x)3x−1=x2−x+1x−x+21 x3+x(x+1)2=xA+x2+1Bx+C (x+1)2=A(x2+1)+(Bx+C)x
A+B=1 C=2 A=1 x2+3x−7; ∴ (x−1)(x2+1)2x=41[(x−1)1−x2+1x+1]+y.