Question
Question: The set of real values of x for which \( {{\log }_{0.2}}\dfrac{x+2}{x}\le 1 \) is: A. \( \left( -\...
The set of real values of x for which log0.2xx+2≤1 is:
A. (−∞,−25]∪(0,+∞)
B. [25,+∞)
C. (−∞,0)∪(58,+∞)
D. None of these.
Solution
- For a=0,1 , if ax=b , then we say logab=x .
- Observe the following facts:
2.1) logab=1 , if a=b.
2.2) logab>1 , if a>1;a<b OR a<1;a>b.
2.3) logab<1 , if a<1;a<b OR a>1;a>b. - In other words, for a=0,1 :
3.1) ax=ay , if x=y.
3.2) ax>ay , if a>1;x>y OR a<1;x3.3) {{a}^{x}}<{{a}^{y}} ,if a<1 ; x>y OR a > 1 ; x4) Convert the "log" into index (power) form and solve the inequation. - Multiplying / Dividing by a negative quantity reverses the sign of the inequality:
If a>b , then an>bn if n>0.
Complete step by step solution:
We know that logab≤1 , if a<1;a≤b OR a>1;a≥b .
Let's say that xx+2=y;x=0 .
Since 0.2<1 , we have the following case for log0.2y≤1 :
0.2≤y
⇒ 0.2≤xx+2
Now, multiplying both sides by x, we get the following two cases:
CASE 1: If x>0 , then:
0.2x≤x+2
⇒ −0.8x≤2
Dividing both sides by -0.8 (a negative number), we get:
⇒ x≥−0.82=−820=−25
Since x>0 , the required values of x can be written as:
x∈(0,+∞)
CASE 2: If x<0 , then:
0.2x≥x+2
⇒ −0.8x≥2
Dividing both sides by -0.8 (a negative number), we get:
⇒ x≤−0.82=−820=−25
Since x<0 , the required values of x can be written as:
x∈(−∞,−25]
∴ The correct answer is A. (−∞,−25]∪(0,+∞) .
Note:
- Logarithm of 1 to any base (non-zero) is 0.
loga1=0 , as a0=1;a=0 - The following formulae are useful:
log(mn)=logm+logn
log(nm)=logm−logn
logax=xloga - Logarithms convert a complex mathematical calculation into simple additions and subtractions.