Solveeit Logo

Question

Question: The set of real values of x for which \( {{\log }_{0.2}}\dfrac{x+2}{x}\le 1 \) is: A. \( \left( -\...

The set of real values of x for which log0.2x+2x1{{\log }_{0.2}}\dfrac{x+2}{x}\le 1 is:
A. (,52](0,+)\left( -\infty ,-\dfrac{5}{2} \right]\cup \left( 0,+\infty \right)
B. [52,+)\left[ \dfrac{5}{2},+\infty \right)
C. (,0)(85,+)\left( -\infty ,0 \right)\cup \left( \dfrac{8}{5},+\infty \right)
D. None of these.

Explanation

Solution

  1. For a0,1a\ne 0,1 , if ax=b{{a}^{x}}=b , then we say logab=x{{\log }_{a}}b=x .
  2. Observe the following facts:
    2.1) logab=1{{\log }_{a}}b=1 , if a=ba=b.
    2.2) logab>1{{\log }_{a}} b >1 , if a>1;a<ba>1; a < b OR a<1;a>ba<1;a>b.
    2.3) logab<1{{\log }_{a}}b<1 , if a<1;a<ba<1; a< b OR a>1;a>ba> 1; a>b.
  3. In other words, for a0,1a\ne 0,1 :
    3.1) ax=ay{{a}^{x}}={{a}^{y}} , if x=yx=y.
    3.2) ax>ay{{a}^{x}}>{{a}^{y}} , if a>1;x>ya>1;x>y OR a<1;x3.3)a<1;x3.3) {{a}^{x}}<{{a}^{y}} ,if, if a<1 ; x>y OROR a > 1 ; x4) Convert the "log" into index (power) form and solve the inequation.
  4. Multiplying / Dividing by a negative quantity reverses the sign of the inequality:
    If a>ba>b , then an>bna^n>b^n if n>0n>0.

Complete step by step solution:
We know that logab1{{\log }_{a}}b\le 1 , if a<1;aba<1;a\le b OR a>1;aba>1;a\ge b .
Let's say that x+2x=y;x0\dfrac{x+2}{x}=y;x\ne 0 .
Since 0.2<10.2<1 , we have the following case for log0.2y1{{\log }_{0.2}}y\le 1 :
0.2y0.2\le y
0.2x+2x0.2\le \dfrac{x+2}{x}
Now, multiplying both sides by x, we get the following two cases:
CASE 1: If x>0x>0 , then:
0.2xx+20.2x\le x+2
0.8x2-0.8x\le 2
Dividing both sides by -0.8 (a negative number), we get:
x20.8=208=52x\ge -\dfrac{2}{0.8}=-\dfrac{20}{8}=-\dfrac{5}{2}
Since x>0x>0 , the required values of x can be written as:
x(0,+)x\in \left( 0,+\infty \right)
CASE 2: If x<0x<0 , then:
0.2xx+20.2x\ge x+2
0.8x2-0.8x\ge 2
Dividing both sides by -0.8 (a negative number), we get:
x20.8=208=52x\le -\dfrac{2}{0.8}=-\dfrac{20}{8}=-\dfrac{5}{2}
Since x<0x<0 , the required values of x can be written as:
x(,52]x\in \left( -\infty ,-\dfrac{5}{2} \right]

∴ The correct answer is A. (,52](0,+) \left( -\infty ,-\dfrac{5}{2} \right]\cup \left( 0,+\infty \right) .

Note:

  1. Logarithm of 1 to any base (non-zero) is 0.
    loga1=0{{\log }_{a}}1=0 , as a0=1;a0{{a}^{0}}=1;a\ne 0
  2. The following formulae are useful:
    log(mn)=logm+logn\log (mn)=\log m+\log n
    log(mn)=logmlogn\log \left( \dfrac{m}{n} \right)=\log m-\log n
    logax=xloga\log {{a}^{x}}=x\log a
  3. Logarithms convert a complex mathematical calculation into simple additions and subtractions.