Solveeit Logo

Question

Mathematics Question on Sets

The set of real values of x for which log0.2x+2x1\log_{0.2} \frac{x +2}{x} \leq 1 is

A

(,52](0,)\bigg( - \infty , - \frac{5}{2} \bigg] \cup (0, \infty)

B

[52,)\bigg[ \frac{5}{2} , \infty \bigg)

C

(,2)[0,)( - \infty , -2) \cup [0 , \infty)

D

none of these

Answer

(,52](0,)\bigg( - \infty , - \frac{5}{2} \bigg] \cup (0, \infty)

Explanation

Solution

The inequality is log0.2x+2x1 {log_{0.2} \frac{x + 2}{x} \leq 1} The L.H.S is valid if x+2x>0 { \frac{x + 2}{x} > 0} x(x+2)>0x<2orx>0 \Rightarrow \: {x(x + 2) > 0 \Rightarrow x < -2 \, or \: x > 0} Solving the inequality, we get (note that base < 1). x+2x0.2=15 { \frac{x + 2}{x}\geq 0.2 = \frac{1}{5}} x+2x1504x+105x0\Rightarrow \frac{x +2}{x} -\frac{1}{5} \ge 0 \Rightarrow \frac{4x + 10}{5x} \ge 0 x(2x+5)0x52x \left(2x+5\right)\ge0 \Rightarrow x \le -\frac{5}{2} or x0x \ge0 Taking the intersection, we get x52 {x \leq - \frac{5}{2}} or x>0x > 0 x(,52](0,)\Rightarrow \: x \in \left( - \infty , - \frac{5}{2} \right] \cup (0 , \infty)