Solveeit Logo

Question

Mathematics Question on Application of derivatives

The set of real values of x for which f(x)=xlogx f(x) = \frac {x}{log\, x} increasing, is

A

x:x<e\\{x : x < e \\}

B

1\\{ 1\\}

C

x:xe\\{x:x \geq e\\}

D

empty

Answer

x:xe\\{x:x \geq e\\}

Explanation

Solution

f(x)=xlogxf(x)= \frac{x}{\log x}
f(x)=logx1x1x(logx)2=(logx1)(logx)2f'(x)=\frac{\log x \cdot 1-x \cdot \frac{1}{x}}{(\log x)^{2}}=\frac{(\log x-1)}{(\log x)^{2}}
We know that, f(x)f(x) is increasing (strictly) When f(x)>0f^{\prime}(x)>0
(logx1)(logx)2>0\Rightarrow \frac{(\log x-1)}{(\log x)^{2}} >0
(logx1)>0\Rightarrow (\log x-1)>0
logx>1\Rightarrow \log x>1
logex>logee\Rightarrow \log _{e} x>\log _{e} e
x>e\Rightarrow x >e
Hence, x:xex: x \geq e