Solveeit Logo

Question

Question: The set of real values of x for which \(C = 2\)is....

The set of real values of x for which C=2C = 2is.

A

x2+3x7x^{2} + 3x - 7

B

px+q(xa)(xb)=pa+q(xa)(ab)+pb+q(ba)(xb)\frac{px + q}{(x - a)(x - b)} = \frac{pa + q}{(x - a)(a - b)} + \frac{pb + q}{(b - a)(x - b)}

C

x(x1)(x2+1)2=14[1(x1)x+1x2+1]+y\frac{x}{(x - 1)(x^{2} + 1)^{2}} = \frac{1}{4}\left\lbrack \frac{1}{(x - 1)} - \frac{x + 1}{x^{2} + 1} \right\rbrack + y

D

None of these

Answer

px+q(xa)(xb)=pa+q(xa)(ab)+pb+q(ba)(xb)\frac{px + q}{(x - a)(x - b)} = \frac{pa + q}{(x - a)(a - b)} + \frac{pb + q}{(b - a)(x - b)}

Explanation

Solution

x(x1)(x2+1)2=14[1(x1)x+1x2+1]+Ax+B(x2+1)24x=(x2+1)2(x+1)(x1)(x2+1)+4(Ax+B)(x1)4A+2=0\frac{x}{(x - 1)(x^{2} + 1)^{2}} = \frac{1}{4}\left\lbrack \frac{1}{(x - 1)} - \frac{x + 1}{x^{2} + 1} \right\rbrack + \frac{Ax + B}{(x^{2} + 1)^{2}}4x = (x^{2} + 1)^{2} - (x + 1)(x - 1)(x^{2} + 1) + 4(Ax + B)(x - 1)4A + 2 = 0

4B4A=44B - 4A = 4 A=12B=12A = \frac{- 1}{2}B = \frac{1}{2}\therefore

y=Ax+B(x2+1)2=12(1x)(x2+1)2y = \frac{Ax + B}{(x^{2} + 1)^{2}} = \frac{1}{2}\frac{(1 - x)}{(x^{2} + 1)^{2}} 5x+6(2+x)(1x)=432+x+1131x\frac{5x + 6}{(2 + x)(1 - x)} = \frac{\frac{- 4}{3}}{2 + x} + \frac{\frac{11}{3}}{1 - x} \Rightarrow 23[1x2+x24x38+......+(1)nxn2n+......]\frac{- 2}{3}\left\lbrack 1 - \frac{x}{2} + \frac{x^{2}}{4} - \frac{x^{3}}{8} + ...... + ( - 1)^{n}\frac{x^{n}}{2^{n}} + ...... \right\rbrack or +113[1+x+x2+.......+xn+.....]+ \frac{11}{3}\lbrack 1 + x + x^{2} + ....... + x^{n} + .....\rbrack

But for xnx^{n} to be defined, 23(1)n12n+113\frac{- 2}{3}( - 1)^{n}\frac{1}{2^{n}} + \frac{11}{3} i.e., x=1x = 1

x=r1=Ar(r)(r+1)(r+2),.....(1).1.2....(r+n)x = - r1 = A_{r}( - r)( - r + 1)( - r + 2),.....( - 1).1.2....( - r + n).