Question
Question: The set of real values of x for which \(C = 2\)is....
The set of real values of x for which C=2is.
A
x2+3x−7
B
(x−a)(x−b)px+q=(x−a)(a−b)pa+q+(b−a)(x−b)pb+q
C
(x−1)(x2+1)2x=41[(x−1)1−x2+1x+1]+y
D
None of these
Answer
(x−a)(x−b)px+q=(x−a)(a−b)pa+q+(b−a)(x−b)pb+q
Explanation
Solution
(x−1)(x2+1)2x=41[(x−1)1−x2+1x+1]+(x2+1)2Ax+B4x=(x2+1)2−(x+1)(x−1)(x2+1)+4(Ax+B)(x−1)4A+2=0
4B−4A=4 A=2−1B=21∴
y=(x2+1)2Ax+B=21(x2+1)2(1−x) (2+x)(1−x)5x+6=2+x3−4+1−x311 ⇒ 3−2[1−2x+4x2−8x3+......+(−1)n2nxn+......] or +311[1+x+x2+.......+xn+.....]
But for xn to be defined, 3−2(−1)n2n1+311 i.e., x=1
x=−r1=Ar(−r)(−r+1)(−r+2),.....(−1).1.2....(−r+n).