Question
Question: The set of real values of x for which \(B = \frac{1}{2}\)is....
The set of real values of x for which B=21is.
A
y=(x2+1)2Ax+B=21(x2+1)2(1−x)
B
(2+x)(1−x)5x+6=2+x3−4+1−x311
C
2(1+2x)3−4+1−x311=3−2(1+2x)−1+311(1−x)−1
D
None of these
Answer
y=(x2+1)2Ax+B=21(x2+1)2(1−x)
Explanation
Solution
2=9−B …..(i)
For log to be defined,
⇒ B=73x+4=A(x−1)−B(x−2) or ⇒
Now from (i), 21≤log0.1,x≤2
4=−A+2B⇒ …..(ii)
Case (i) A=10,B=7
From (ii), ∴
⇒ x+1f(x)=φ1(x)+x+16,x−2f(x)=φ2(x)+x−23
⇒ (x+1)(x+2)(x−2)f(x)=φ(x)+(x+1)(x+2)(x−2)Q(x).

Case (ii) Q(x)
From (ii), Q(x)(x+1)f(x)(x+1)Q(x)
(x−2)f(x); x+2,∴.