Question
Question: The set of real roots of the equation log<sub>(5x + 4)</sub> (2x + 3)<sup>3</sup> – log<sub>(2x + 3...
The set of real roots of the equation
log(5x + 4) (2x + 3)3 – log(2x + 3) (10x2 + 23x + 12) = 1 is –
A
{– 1}
B
{– 3/5}
C
Empty set
D
{– 1/3}
Answer
{– 1/3}
Explanation
Solution
We have
log(5x + 4) (2x + 3)3 – log(2x + 3)
(10x2 + 23x + 12) = 1
⇒ 3 log(5x + 4) (2x + 3) – log(2x + 3) (5x + 4)
– log2x + 3 (2x + 3) = 1
⇒ 3 log(5x + 4) (2x + 3) – log(2x + 3) (5x + 4) = 2 ….(1)
⇒ 3y – y1– 2 = 0 where y = log(5x + 4) (2x + 3)
⇒ 3y2 – 2y – 1 = 0 ⇒ y = – 31, 1.
(1) ⇒ 2x + 3 > 0, 5x + 4 > 0, 5x + 4 ≠ 1, 2x + 3 ≠ 1
⇒ x > – 3/2, x > – 4/5, x ≠ – 3/5, x ≠ – 1
⇒ x > – 3/5.
Now 2x + 3 > 2(−53)+ 3 = 59> 1
and 5x + 4 > 5(−53)+ 4 = 1
∴ log (2x + 3) > 0, log (5x + 4) > 0
y = log(5x + 4) (2x + 3)
= log(5x+4)log(2x+3)= (+)(+)> 0
∴ y ≠ – 31
∴ y = 1 ⇒ log(5x+4)log(2x+3)= 1 ⇒ 2x + 3 = 5x + 4
⇒ x = – 31.