Solveeit Logo

Question

Question: The set of real roots of the equation log<sub>(5x + 4)</sub> (2x + 3)<sup>3</sup> – log<sub>(2x + 3...

The set of real roots of the equation

log(5x + 4) (2x + 3)3 – log(2x + 3) (10x2 + 23x + 12) = 1 is –

A

{– 1}

B

{– 3/5}

C

Empty set

D

{– 1/3}

Answer

{– 1/3}

Explanation

Solution

We have

log(5x + 4) (2x + 3)3 – log(2x + 3)

(10x2 + 23x + 12) = 1

⇒ 3 log(5x + 4) (2x + 3) – log(2x + 3) (5x + 4)

– log2x + 3 (2x + 3) = 1

⇒ 3 log(5x + 4) (2x + 3) – log(2x + 3) (5x + 4) = 2 ….(1)

⇒ 3y – 1y\frac{1}{y}– 2 = 0 where y = log(5x + 4) (2x + 3)

⇒ 3y2 – 2y – 1 = 0 ⇒ y = – 13\frac{1}{3}, 1.

(1) ⇒ 2x + 3 > 0, 5x + 4 > 0, 5x + 4 ≠ 1, 2x + 3 ≠ 1

⇒ x > – 3/2, x > – 4/5, x ≠ – 3/5, x ≠ – 1

⇒ x > – 3/5.

Now 2x + 3 > 2(35)\left( - \frac{3}{5} \right)+ 3 = 95\frac{9}{5}> 1

and 5x + 4 > 5(35)\left( - \frac{3}{5} \right)+ 4 = 1

∴ log (2x + 3) > 0, log (5x + 4) > 0

y = log(5x + 4) (2x + 3)

= log(2x+3)log(5x+4)\frac{\log(2x + 3)}{\log(5x + 4)}= (+)(+)\frac{( + )}{( + )}> 0

∴ y ≠ – 13\frac{1}{3}

∴ y = 1 ⇒ log(2x+3)log(5x+4)\frac{\log(2x + 3)}{\log(5x + 4)}= 1 ⇒ 2x + 3 = 5x + 4

⇒ x = – 13\frac{1}{3}.