Solveeit Logo

Question

Question: The set of equations $y = \lambda x + \cos \theta z, 4x + 2y + z = x + y - z$ $(\cos \theta)x + y + ...

The set of equations y=λx+cosθz,4x+2y+z=x+yzy = \lambda x + \cos \theta z, 4x + 2y + z = x + y - z (cosθ)x+y+2z=0,0θ<2π(\cos \theta)x + y + 2z = 0, 0 \leq \theta < 2\pi, has non-trivial solution(s)

Answer

No non-trivial solutions

Explanation

Solution

To determine if the given system of linear equations has non-trivial solutions, we first need to write the equations in the standard homogeneous form Ax+By+Cz=0Ax + By + Cz = 0.

The given equations are:

  1. y=λx+cosθzy = \lambda x + \cos \theta z
  2. 4x+2y+z=x+yz4x + 2y + z = x + y - z
  3. (cosθ)x+y+2z=0(\cos \theta)x + y + 2z = 0

Rewrite them in the standard form:

  1. λxy+(cosθ)z=0\lambda x - y + (\cos \theta) z = 0
  2. 4xx+2yy+z(z)=03x+y+2z=04x - x + 2y - y + z - (-z) = 0 \Rightarrow 3x + y + 2z = 0
  3. (cosθ)x+y+2z=0(\cos \theta)x + y + 2z = 0

Now, form the coefficient matrix AA for this homogeneous system: A=(λ1cosθ312cosθ12)A = \begin{pmatrix} \lambda & -1 & \cos \theta \\ 3 & 1 & 2 \\ \cos \theta & 1 & 2 \end{pmatrix}

For a homogeneous system of linear equations to have non-trivial solutions, the determinant of the coefficient matrix must be zero, i.e., det(A)=0\det(A) = 0.

Calculate the determinant of AA: det(A)=λ1212(1)32cosθ2+(cosθ)31cosθ1\det(A) = \lambda \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 2 \\ \cos \theta & 2 \end{vmatrix} + (\cos \theta) \begin{vmatrix} 3 & 1 \\ \cos \theta & 1 \end{vmatrix}

det(A)=λ(1221)+1(322cosθ)+(cosθ)(311cosθ)\det(A) = \lambda (1 \cdot 2 - 2 \cdot 1) + 1 (3 \cdot 2 - 2 \cdot \cos \theta) + (\cos \theta) (3 \cdot 1 - 1 \cdot \cos \theta)

det(A)=λ(22)+(62cosθ)+(3cosθcos2θ)\det(A) = \lambda (2 - 2) + (6 - 2 \cos \theta) + (3 \cos \theta - \cos^2 \theta)

det(A)=λ(0)+62cosθ+3cosθcos2θ\det(A) = \lambda (0) + 6 - 2 \cos \theta + 3 \cos \theta - \cos^2 \theta

det(A)=6+cosθcos2θ\det(A) = 6 + \cos \theta - \cos^2 \theta

Now, set the determinant to zero to find the conditions for non-trivial solutions: 6+cosθcos2θ=06 + \cos \theta - \cos^2 \theta = 0

Multiply by -1 to rearrange the terms into a standard quadratic form: cos2θcosθ6=0\cos^2 \theta - \cos \theta - 6 = 0

Let u=cosθu = \cos \theta. The equation becomes a quadratic equation in uu: u2u6=0u^2 - u - 6 = 0

Factorize the quadratic equation: (u3)(u+2)=0(u - 3)(u + 2) = 0

This gives two possible values for uu: u=3u = 3 or u=2u = -2

Substitute back u=cosθu = \cos \theta: cosθ=3\cos \theta = 3 or cosθ=2\cos \theta = -2

However, the range of the cosine function for real values of θ\theta is [1,1][-1, 1]. That is, 1cosθ1-1 \leq \cos \theta \leq 1. Neither cosθ=3\cos \theta = 3 nor cosθ=2\cos \theta = -2 falls within this valid range.

Since there are no real values of θ\theta for which cosθ=3\cos \theta = 3 or cosθ=2\cos \theta = -2, the determinant det(A)\det(A) is never equal to zero for any real θ\theta.

Therefore, the system of equations never has non-trivial solutions. It only possesses the trivial solution (x=0,y=0,z=0x=0, y=0, z=0).